TY - JOUR
T1 - SirT1 in muscle physiology and disease: Lessons from mouse models
AU - Vinciguerra, Manlio
AU - Fulco, Marcella
AU - Ladurner, Andreas
AU - Sartorelli, Vittorio
AU - Rosenthal, Nadia A
PY - 2010
Y1 - 2010
N2 - Sirtuin 1 (SirT1) is the largest of the seven members of the sirtuin family of class III nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylases, whose activation is beneficial for metabolic, neurodegenerative, inflammatory and neoplastic diseases, and augments life span in model organisms (Finkel et al., 2009; Lavu et al., 2008). In vitro studies show that SirT1 protects genome integrity and is involved in circadian physiological rhythms (Asher et al., 2008; Nakahata et al., 2008; Oberdoerffer et al., 2008). In the last few years, a fundamental role for SirT1 in the metabolism and differentiation of skeletal muscle cells has been uncovered (Fulco et al., 2003), and the use of specific transgenic or knockout SirT1 mouse models implicates it in the protection of heart muscle from oxidative and hypertrophic stresses (Alcendor et al., 2007). In this Perspective, we review the recent exciting findings that have established a key role for the longevity protein SirT1 in skeletal and heart muscle physiology and disease. Furthermore, given the multiple biological functions of SirT1, we discuss the unique opportunities that SirT1 mouse models can offer to improve our integrated understanding of the metabolism, as well as the regeneration and aging-associated changes in the circadian function, of skeletal and heart muscle.
AB - Sirtuin 1 (SirT1) is the largest of the seven members of the sirtuin family of class III nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylases, whose activation is beneficial for metabolic, neurodegenerative, inflammatory and neoplastic diseases, and augments life span in model organisms (Finkel et al., 2009; Lavu et al., 2008). In vitro studies show that SirT1 protects genome integrity and is involved in circadian physiological rhythms (Asher et al., 2008; Nakahata et al., 2008; Oberdoerffer et al., 2008). In the last few years, a fundamental role for SirT1 in the metabolism and differentiation of skeletal muscle cells has been uncovered (Fulco et al., 2003), and the use of specific transgenic or knockout SirT1 mouse models implicates it in the protection of heart muscle from oxidative and hypertrophic stresses (Alcendor et al., 2007). In this Perspective, we review the recent exciting findings that have established a key role for the longevity protein SirT1 in skeletal and heart muscle physiology and disease. Furthermore, given the multiple biological functions of SirT1, we discuss the unique opportunities that SirT1 mouse models can offer to improve our integrated understanding of the metabolism, as well as the regeneration and aging-associated changes in the circadian function, of skeletal and heart muscle.
UR - http://www.ncbi.nlm.nih.gov/pubmed/20354108
U2 - 10.1242/dmm.004655
DO - 10.1242/dmm.004655
M3 - Article
SN - 1754-8403
VL - 3
SP - 298
EP - 303
JO - Disease Models & Mechanisms
JF - Disease Models & Mechanisms
IS - 5-6
ER -