Projects per year
Abstract
Small-domain cloud-resolving model and single-column model simulations have historically applied one of three representations of large-scale vertical motion, (Formula presented.). In simulations of radiative-convective equilibrium, (Formula presented.), and a balance develops between convective heating and radiative cooling. Under the weak-temperature gradient approximation and related approaches, (Formula presented.) is diagnosed based on the model's thermodynamic profile. Finally, for real-case simulations, (Formula presented.) may be prescribed as a time-varying field derived from observations. Here, we propose one additional setup, namely, a prescribed but time-invariant vertical motion. In this case, the atmosphere evolves toward an equilibrium state characterized by a three-way balance between radiative and adiabatic cooling and convective heating, with the relative contribution of radiation decreasing with increasing (Formula presented.). We refer to this state as radiative-convective-dynamical equilibrium (RCDE). In this preliminary study we highlight the characteristics of the RCDE state through a suite of simulations performed with a single cloud-resolving model and single-column model. An appealing aspect of these simulations is the wide variety of equilibrium states achieved, ranging from dry and strongly unstable for small (Formula presented.) to approximately moist neutral for large (Formula presented.). This makes RCDE a propitious framework for future model intercomparisons.
Original language | English |
---|---|
Article number | e2019MS001734 |
Number of pages | 22 |
Journal | Journal of Advances in Modeling Earth Systems |
Volume | 12 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2020 |
Keywords
- convection
- CRM
- RCDE
- RCE
- SCM
- tropics
Projects
- 2 Finished
-
Intense thunderstorms in the tropics and subtropics under global warming
Australian Research Council (ARC)
1/06/19 → 31/12/22
Project: Research
-
ARC Centre of Excellence for Climate Extremes
Pitman, A. J. (Primary Chief Investigator (PCI)), Jakob, C. (Chief Investigator (CI)), Alexander, L. (Chief Investigator (CI)), Reeder, M. (Chief Investigator (CI)), Roderick, M. (Chief Investigator (CI)), England, M. H. (Chief Investigator (CI)), Abramowitz, G. (Chief Investigator (CI)), Abram, N. (Chief Investigator (CI)), Arblaster, J. (Chief Investigator (CI)), Bindoff, N. L. (Chief Investigator (CI)), Dommenget, D. (Chief Investigator (CI)), Evans, J. P. (Chief Investigator (CI)), Hogg, A. M. (Chief Investigator (CI)), Holbrook, N. J. (Chief Investigator (CI)), Karoly, D. J. (Chief Investigator (CI)), Lane, T. P. (Chief Investigator (CI)), Sherwood, S. C. (Chief Investigator (CI)), Strutton, P. (Chief Investigator (CI)), Ebert, E. (Partner Investigator (PI)), Hendon, H. (Partner Investigator (PI)), Hirst, A. C. (Partner Investigator (PI)), Marsland, S. (Partner Investigator (PI)), Matear, R. (Partner Investigator (PI)), Protat, A. (Partner Investigator (PI)), Wang, Y. (Partner Investigator (PI)), Wheeler, M. C. (Partner Investigator (PI)), Best, M. J. (Partner Investigator (PI)), Brody, S. (Partner Investigator (PI)), Grabowski, W. (Partner Investigator (PI)), Griffies, S. (Partner Investigator (PI)), Gruber, N. (Partner Investigator (PI)), Gupta, H. (Partner Investigator (PI)), Hallberg, R. (Partner Investigator (PI)), Hohenegger, C. (Partner Investigator (PI)), Knutti, R. (Partner Investigator (PI)), Meehl, G. A. (Partner Investigator (PI)), Milton, S. (Partner Investigator (PI)), de Noblet-Ducoudre, N. (Partner Investigator (PI)), Or, D. (Partner Investigator (PI)), Petch, J. (Partner Investigator (PI)), Peters-Lidard, C. (Partner Investigator (PI)), Overpeck, J. (Partner Investigator (PI)), Russell, J. (Partner Investigator (PI)), Santanello, J. (Partner Investigator (PI)), Seneviratne, S. I. (Partner Investigator (PI)), Stephens, G. (Partner Investigator (PI)), Stevens, B. (Partner Investigator (PI)), Stott, P. A. (Partner Investigator (PI)) & Saunders, K. (Chief Investigator (CI))
Monash University – Internal University Contribution, Monash University – Internal School Contribution, Monash University – Internal Faculty Contribution, University of New South Wales (UNSW), Australian National University (ANU), University of Melbourne, University of Tasmania, Bureau of Meteorology (BOM) (Australia), Department of Climate change, Energy, the Environment and Water (DCCEEW) (New South Wales)
1/01/17 → 31/12/24
Project: Research