TY - JOUR
T1 - Silencing relaxin-3 in nucleus incertus of adult rodents
T2 - A viral vector-based approach to investigate neuropeptide function
AU - Callander, Gabrielle E.
AU - Ma, Sherie
AU - Ganella, Despina E.
AU - Wimmer, Verena C.
AU - Gundlach, Andrew L.
AU - Thomas, Walter G.
AU - Bathgate, Ross A D
PY - 2012/8/2
Y1 - 2012/8/2
N2 - Relaxin-3, the most recently identified member of the relaxin peptide family, is produced by GABAergic projection neurons in the nucleus incertus (NI), in the pontine periventricular gray. Previous studies suggest relaxin-3 is a modulator of stress responses, metabolism, arousal and behavioural activation. Knockout mice and peptide infusions in vivo have significantly contributed to understanding the function of this conserved neuropeptide. Yet, a definitive role remains elusive due to discrepancies between models and a propensity to investigate pharmacological effects over endogenous function. To investigate the endogenous function of relaxin-3, we generated a recombinant adeno-associated viral (rAAV) vector expressing microRNA against relaxin-3 and validated its use to knock down relaxin-3 in adult rats. Bilateral stereotaxic infusion of rAAV1/2 EmGFP miR499 into the NI resulted in significant reductions in relaxin-3 expression as demonstrated by ablation of relaxin-3-like immunoreactivity at 3, 6 and 9 weeks and by qRT-PCR at 12 weeks. Neuronal health was unaffected as transduced neurons in all groups retained expression of NeuN and stained for Nissl bodies. Importantly, qRT-PCR confirmed that relaxin-3 receptor expression levels were not altered to compensate for reduced relaxin-3. Behavioural experiments confirmed no detrimental effects on general health or well-being and therefore several behavioural modalities previously associated with relaxin-3 function were investigated. The validation of this viral vector-based model provides a valuable alternative to existing in vivo approaches and promotes a shift towards more physiologically relevant investigations of endogenous neuropeptide function.
AB - Relaxin-3, the most recently identified member of the relaxin peptide family, is produced by GABAergic projection neurons in the nucleus incertus (NI), in the pontine periventricular gray. Previous studies suggest relaxin-3 is a modulator of stress responses, metabolism, arousal and behavioural activation. Knockout mice and peptide infusions in vivo have significantly contributed to understanding the function of this conserved neuropeptide. Yet, a definitive role remains elusive due to discrepancies between models and a propensity to investigate pharmacological effects over endogenous function. To investigate the endogenous function of relaxin-3, we generated a recombinant adeno-associated viral (rAAV) vector expressing microRNA against relaxin-3 and validated its use to knock down relaxin-3 in adult rats. Bilateral stereotaxic infusion of rAAV1/2 EmGFP miR499 into the NI resulted in significant reductions in relaxin-3 expression as demonstrated by ablation of relaxin-3-like immunoreactivity at 3, 6 and 9 weeks and by qRT-PCR at 12 weeks. Neuronal health was unaffected as transduced neurons in all groups retained expression of NeuN and stained for Nissl bodies. Importantly, qRT-PCR confirmed that relaxin-3 receptor expression levels were not altered to compensate for reduced relaxin-3. Behavioural experiments confirmed no detrimental effects on general health or well-being and therefore several behavioural modalities previously associated with relaxin-3 function were investigated. The validation of this viral vector-based model provides a valuable alternative to existing in vivo approaches and promotes a shift towards more physiologically relevant investigations of endogenous neuropeptide function.
UR - http://www.scopus.com/inward/record.url?scp=84864462528&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0042300
DO - 10.1371/journal.pone.0042300
M3 - Article
C2 - 22876314
AN - SCOPUS:84864462528
SN - 1932-6203
VL - 7
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e42300
ER -