Significant improvement of optoelectronic and photovoltaic properties by incorporating thiophene in a solution-processable D-A-D modular chromophore

Aaron M Raynor, Akhil Gupta, Christopher M Plummer, Sam L Jackson, Ante Bilic, Hemlata Patil, Prashant Sonar, Sheshanath V Bhosale

Research output: Contribution to journalArticleResearchpeer-review

10 Citations (Scopus)


Through the incorporation of a thiophene functionality, a novel solution-processable small organic chromophore was designed, synthesized and characterized for application in bulk-heterojunction solar cells. The new chromophore, (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylonitrile) (coded as AS2), was based on a donor-acceptor-donor (D-A-D) module where a simple triphenylamine unit served as an electron donor, 1,4-phenylenediacetonitrile as an electron acceptor, and a thiophene ring as the π-bridge embedded between the donor and acceptor functionalities. AS2 was isolated as brick-red, needle-shaped crystals, and was fully characterized by 1H- and 13C-NMR, IR, mass spectrometry and single crystal X-ray diffraction. The optoelectronic and photovoltaic properties of AS2 were compared with those of a structural analogue, (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(4-(diphenylamino)phenyl)-acrylonitrile) (AS1). Benefiting from the covalent thiophene bridges, compared to AS1 thin solid film, the AS2 film showed: (1) an enhancement of light-harvesting ability by 20%; (2) an increase in wavelength of the longest wavelength absorption maximum (497 nm vs. 470 nm) and (3) a narrower optical band-gap (1.93 eV vs. 2.17 eV). Studies on the photovoltaic properties revealed that the best AS2-[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)-based device showed an impressive enhanced power conversion efficiency of 4.10%, an approx. 3-fold increase with respect to the efficiency of the best AS1-based device (1.23%). These results clearly indicated that embodiment of thiophene functionality extended the molecular conjugation, thus enhancing the light-harvesting ability and short-circuit current density, while further improving the bulk-heterojunction device performance. To our knowledge, AS2 is the first example in the literature where a thiophene unit has been used in conjunction with a 1,4-phenylenediacetonitrile accepting functionality to extend the π-conjugation in a given D-A-D motif for bulk-heterojunction solar cell applications.
Original languageEnglish
Pages (from-to)21787-21801
Number of pages15
Issue number12
Publication statusPublished - 2015


  • 1,4-phenylenediacetonitrile
  • Bulk-heterojunction devices
  • Donor-acceptor-donor
  • Solution-processable
  • Thiophene
  • Triphenylamine

Cite this