TY - JOUR
T1 - Sex-Dependent Changes to the Intestinal and Hepatic Abundance of Drug Transporters and Metabolizing Enzymes in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
AU - Koehn, Liam M.
AU - Steele, Joel R.
AU - Schittenhelm, Ralf B.
AU - Turner, Bradley J.
AU - Nicolazzo, Joseph A.
N1 - Funding Information:
The Bethlehem Griffiths Research Foundation is acknowledged for its funding of this research project. B.J.T. is supported by a Stafford Fox Medical Research Foundation Grant.
Publisher Copyright:
© 2024 American Chemical Society
PY - 2024/4
Y1 - 2024/4
N2 - Amyotrophic lateral sclerosis (ALS) is characterized by death and dysfunction of motor neurons that result in a rapidly progressing loss of motor function. While there are some data on alterations at the blood-brain barrier (BBB) in ALS and their potential impact on CNS trafficking of drugs, little is reported on the impact of this disease on the expression of drug-handling proteins in the small intestine and liver. This may impact the dosing of the many medicines that individuals with ALS are prescribed. In the present study, a proteomic evaluation was performed on small intestine and liver samples from postnatal day 120 SOD1G93A mice (a model of familial ALS that harbors a human mutant form of superoxide dismutase 1) and wild-type (WT) littermates (n = 7/genotype/sex). Untargeted, quantitative proteomics was undertaken using either label-based [tandem mass tag (TMT)] or label-free [data-independent acquisition (DIA)] acquisition strategies on high-resolution mass spectrometric instrumentation. Copper chaperone for superoxide dismutase (CCS) was significantly higher in SOD1G93A samples compared to the WT samples for both sexes and tissues, therefore representing a potential biomarker for ALS in this mouse model. Relative to WT mice, male SOD1G93A mice had significantly different proteins (Padj < 0.05, |fold-change|>1.2) in the small intestine (male 22, female 1) and liver (male 140, female 3). This included an up-regulation of intestinal transporters for dietary glucose [solute carrier (SLC) SLC5A1] and cholesterol (Niemann-Pick c1-like 1), as well as for several drugs (e.g., SLC15A1), in the male SOD1G93A mice. There was both an up-regulation (e.g., SLCO2A1) and down-regulation (ammonium transporter rh type b) of transporters in the male SOD1G93A liver. In addition, there was both an up-regulation (e.g., phosphoenolpyruvate carboxykinase) and down-regulation (e.g., carboxylesterase 1) of metabolizing enzymes in the male SOD1G93A liver. This proteomic data set identified male-specific changes to key small intestinal and hepatic transporters and metabolizing enzymes that may have important implications for the bioavailability of nutrients and drugs in individuals with ALS.
AB - Amyotrophic lateral sclerosis (ALS) is characterized by death and dysfunction of motor neurons that result in a rapidly progressing loss of motor function. While there are some data on alterations at the blood-brain barrier (BBB) in ALS and their potential impact on CNS trafficking of drugs, little is reported on the impact of this disease on the expression of drug-handling proteins in the small intestine and liver. This may impact the dosing of the many medicines that individuals with ALS are prescribed. In the present study, a proteomic evaluation was performed on small intestine and liver samples from postnatal day 120 SOD1G93A mice (a model of familial ALS that harbors a human mutant form of superoxide dismutase 1) and wild-type (WT) littermates (n = 7/genotype/sex). Untargeted, quantitative proteomics was undertaken using either label-based [tandem mass tag (TMT)] or label-free [data-independent acquisition (DIA)] acquisition strategies on high-resolution mass spectrometric instrumentation. Copper chaperone for superoxide dismutase (CCS) was significantly higher in SOD1G93A samples compared to the WT samples for both sexes and tissues, therefore representing a potential biomarker for ALS in this mouse model. Relative to WT mice, male SOD1G93A mice had significantly different proteins (Padj < 0.05, |fold-change|>1.2) in the small intestine (male 22, female 1) and liver (male 140, female 3). This included an up-regulation of intestinal transporters for dietary glucose [solute carrier (SLC) SLC5A1] and cholesterol (Niemann-Pick c1-like 1), as well as for several drugs (e.g., SLC15A1), in the male SOD1G93A mice. There was both an up-regulation (e.g., SLCO2A1) and down-regulation (ammonium transporter rh type b) of transporters in the male SOD1G93A liver. In addition, there was both an up-regulation (e.g., phosphoenolpyruvate carboxykinase) and down-regulation (e.g., carboxylesterase 1) of metabolizing enzymes in the male SOD1G93A liver. This proteomic data set identified male-specific changes to key small intestinal and hepatic transporters and metabolizing enzymes that may have important implications for the bioavailability of nutrients and drugs in individuals with ALS.
KW - amyotrophic lateral sclerosis
KW - liver
KW - metabolizing enzyme
KW - motor neuron disease
KW - small intestine
KW - transporter
UR - http://www.scopus.com/inward/record.url?scp=85186478708&partnerID=8YFLogxK
U2 - 10.1021/acs.molpharmaceut.3c01089
DO - 10.1021/acs.molpharmaceut.3c01089
M3 - Article
C2 - 38415587
AN - SCOPUS:85186478708
SN - 1543-8384
VL - 21
SP - 1756
EP - 1767
JO - Molecular Pharmaceutics
JF - Molecular Pharmaceutics
IS - 4
ER -