Set7 mediated interactions regulate transcriptional networks in embryonic stem cells

Natasha K. Tuano, Jun Okabe, Mark Daniel Ziemann, Mark Emmauel Cooper, Assam El-Osta

Research output: Contribution to journalArticleResearchpeer-review

12 Citations (Scopus)


Histone methylation by lysine methyltransferase enzymes regulate the expression of genes implicated in lineage specificity and cellular differentiation. While it is known that Set7 catalyzes mono-methylation of histone and non-histone proteins, the functional importance of this enzyme in stem cell differentiation remains poorly understood. We show Set7 expression is increased during mouse embryonic stem cell (mESC) differentiation and is regulated by the pluripotency factors, Oct4 and Sox2. Transcriptional network analyses reveal smooth muscle (SM) associated genes are subject to Set7-mediated regulation. Furthermore, pharmacological inhibition of Set7 activity confirms this regulation. We observe Set7-mediated modification of serum response factor (SRF) and mono-methylation of histone H4 lysine 4 (H3K4me1) regulate gene expression. We conclude the broad substrate specificity of Set7 serves to control key transcriptional networks in embryonic stem cells.
Original languageEnglish
Pages (from-to)9206-9217
Number of pages12
JournalNucleic Acids Research
Issue number19
Publication statusPublished - 2016

Cite this