Abstract
Recognizing the identities of people in everyday photos is still a very challenging problem for machine vision, due to issues such as non-frontal faces, changes in clothing, location and lighting. Recent studies have shown that rich relational information between people in the same photo can help in recognizing their identities. In this work, we propose to model the relational information between people as a sequence prediction task. At the core of our work is a novel recurrent network architecture, in which relational information between instances' labels and appearance are modeled jointly. In addition to relational cues, scene context is incorporated in our sequence prediction model with no additional cost. In this sense, our approach is a unified framework for modeling both contextual cues and visual appearance of person instances. Our model is trained end-to-end with a sequence of annotated instances in a photo as inputs, and a sequence of corresponding labels as targets. We demonstrate that this simple but elegant formulation achieves state-of-the-art performance on the newly released People In Photo Albums (PIPA) dataset.
Original language | English |
---|---|
Title of host publication | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
Editors | Yanxi Liu, James M. Rehg, Camillo J. Taylor, Ying Wu |
Place of Publication | Piscataway NJ USA |
Publisher | IEEE, Institute of Electrical and Electronics Engineers |
Pages | 5660-5668 |
Number of pages | 9 |
ISBN (Electronic) | 9781538604571 |
ISBN (Print) | 9781538604588 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |
Event | IEEE Conference on Computer Vision and Pattern Recognition 2017 - Honolulu, United States of America Duration: 21 Jul 2017 → 26 Jul 2017 http://cvpr2017.thecvf.com/ https://ieeexplore.ieee.org/xpl/conhome/8097368/proceeding (Proceedings) |
Conference
Conference | IEEE Conference on Computer Vision and Pattern Recognition 2017 |
---|---|
Abbreviated title | CVPR 2017 |
Country/Territory | United States of America |
City | Honolulu |
Period | 21/07/17 → 26/07/17 |
Internet address |