Projects per year
Abstract
We present a new technique, based on semivariogram methodology, for obtaining point estimates for use in prior modeling for solving Bayesian inverse problems. This method requires a connection between Gaussian processes with covariance operators defined by the Matérn covariance function and Gaussian processes with precision (inverse-covariance) operators defined by the Green's functions of a class of elliptic stochastic partial differential equations (SPDEs). We present a detailed mathematical description of this connection. We will show that there is an equivalence between these two Gaussian processes when the domain is infinite - for us, R2- which breaks down when the domain is finite due to the effect of boundary conditions on Green's functions of PDEs. We show how this connection can be re-established using extended domains. We then introduce the semivariogram method for estimating the Matérn covariance hyperparameters, which specify the Gaussian prior needed for stabilizing the inverse problem. Results are extended from the isotropic case to the anisotropic case where the correlation length in one direction is larger than another. Finally, we consider the situation where the correlation length is spatially dependent rather than constant. We implement each method in two-dimensional image inpainting test cases to show that it works on practical examples.
Original language | English |
---|---|
Article number | 055006 |
Number of pages | 27 |
Journal | Inverse Problems |
Volume | 36 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2020 |
Keywords
- Bayesian methods
- boundary conditions
- Gaussian field
- inverse problems
- stochastic partial differential equations
- variogram
- Whittle-Matern
Projects
- 1 Finished
-
ARC Centre of Excellence for Mathematical and Statistical Frontiers of Big Data, Big Models, New Insights
Hall, P., Bartlett, P., Bean, N., Burrage, K., DeGier, J., Delaigle, A., Forrester, P., Geweke, J., Kohn, R., Kroese, D., Mengersen, K. L., Pettit, A., Pollett, P., Roughan, M., Ryan, L. M., Taylor, P., Turner, I., Wand, M., Garoni, T., Smith-Miles, K. A., Caley, M., Churches, T., Elazar, D., Gupta, A., Harch, B., Tam, S., Weegberg, K., Willinger, W. & Hyndman, R.
Australian Research Council (ARC), Monash University – Internal Department Contribution, University of Melbourne, Queensland University of Technology (QUT), University of Adelaide, University of New South Wales (UNSW), University of Queensland , University of Technology (UTS) Sydney, Monash University – Internal University Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal School Contribution, Roads Corporation (trading as VicRoads) (Victoria)
1/01/17 → 31/12/21
Project: Research