TY - JOUR
T1 - Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel
AU - Marchesan, Silvia
AU - Qu, Yue
AU - Waddington, Lynne
AU - Easton, Christopher D
AU - Glattauer, Veronica
AU - Lithgow, Trevor James
AU - McLean, Keith M
AU - Forsythe, John Stanley
AU - Hartley, Patrick Gordon
PY - 2013
Y1 - 2013
N2 - This work reports the self-assembly of a sparingly soluble antibiotic (ciprofloxacin) and a hydrophobic tripeptide ((D)Leu-Phe-Phe) into supramolecular nanostructures that yield a macroscopic hydrogel at physiological pH. Drug incorporation results in modified morphology and rheological properties of the self-assembled hydrogel. These changes can be correlated with intermolecular interactions between the drug and the peptide, as confirmed by spectroscopic analysis (fluorescence, circular dichroism, IR). The drug appears bound within the hydrogel by non-covalent interactions, and retains its activity over a prolonged release timescale. Antimicrobial activity of the ciprofloxacin-peptide self-assembled hydrogel was evaluated against Staphylococcus aureus, Escherichia coli, and a clinical strain of Klebsiella pneumoniae. Interestingly, the peptide hydrogel alone exhibited a mild anti-bacterial activity against Gram-negative bacteria. While toxic to bacteria, no major cytotoxicity was seen in haemolysis assays of human red blood cells or in mouse fibroblast cell cultures. This new approach of drug incorporation into the nanostructure of a simple tripeptide hydrogel by self-assembly may have important applications for cost-effective wound dressings and novel antimicrobial formulations.
AB - This work reports the self-assembly of a sparingly soluble antibiotic (ciprofloxacin) and a hydrophobic tripeptide ((D)Leu-Phe-Phe) into supramolecular nanostructures that yield a macroscopic hydrogel at physiological pH. Drug incorporation results in modified morphology and rheological properties of the self-assembled hydrogel. These changes can be correlated with intermolecular interactions between the drug and the peptide, as confirmed by spectroscopic analysis (fluorescence, circular dichroism, IR). The drug appears bound within the hydrogel by non-covalent interactions, and retains its activity over a prolonged release timescale. Antimicrobial activity of the ciprofloxacin-peptide self-assembled hydrogel was evaluated against Staphylococcus aureus, Escherichia coli, and a clinical strain of Klebsiella pneumoniae. Interestingly, the peptide hydrogel alone exhibited a mild anti-bacterial activity against Gram-negative bacteria. While toxic to bacteria, no major cytotoxicity was seen in haemolysis assays of human red blood cells or in mouse fibroblast cell cultures. This new approach of drug incorporation into the nanostructure of a simple tripeptide hydrogel by self-assembly may have important applications for cost-effective wound dressings and novel antimicrobial formulations.
UR - http://goo.gl/IRDDfA
U2 - 10.1016/j.biomaterials.2013.01.096
DO - 10.1016/j.biomaterials.2013.01.096
M3 - Article
SN - 0142-9612
VL - 34
SP - 3678
EP - 3687
JO - Biomaterials
JF - Biomaterials
IS - 14
ER -