Self-assembly and characterization of 2D plasmene nanosheets

Dashen Dong, Runfang Fu, Qianqian Shi, Wenlong Cheng

Research output: Contribution to journalArticleOtherpeer-review

Abstract

Freestanding plasmonic nanoparticle (NP) superlattice sheets are novel 2D nanomaterials with tailorable properties that enable their use for broad applications in sensing, anticounterfeit measures, ionic gating, nanophotonics and flat lenses. We recently developed a robust, yet general, two-step drying-mediated approach to produce freestanding monolayer, plasmonic NP superlattice sheets, which are typically held together by holey grids with minimal solid support. Within these superlattices, NP building blocks are closely packed and have strong plasmonic coupling interactions; hence, we termed such freestanding materials ‘plasmene nanosheets’. Using the desired NP building blocks as starting material, we describe the detailed fabrication protocol, including NP surface functionalization by thiolated polystyrene and the self-assembly of NPs at the air–water interface. We also discuss various characterization approaches for checking the quality and optical properties of the as-obtained plasmene nanosheets: optical microscopy, spectrophotometry, transmission/scanning electron microscopy (TEM/SEM) and atomic force microscopy (AFM). With regard to different constituent building blocks, the key experimental parameters, including NP concentration and volume, are summarized to guide the successful fabrication of specific types of plasmene nanosheets. This protocol, from initial NP synthesis to the final fabrication and characterization, takes ~33.5 h.

Original languageEnglish
Number of pages19
JournalNature Protocols
Volume14
DOIs
Publication statusPublished - 2019

Cite this

@article{1d51a15e377c427b96dba0d135d48bee,
title = "Self-assembly and characterization of 2D plasmene nanosheets",
abstract = "Freestanding plasmonic nanoparticle (NP) superlattice sheets are novel 2D nanomaterials with tailorable properties that enable their use for broad applications in sensing, anticounterfeit measures, ionic gating, nanophotonics and flat lenses. We recently developed a robust, yet general, two-step drying-mediated approach to produce freestanding monolayer, plasmonic NP superlattice sheets, which are typically held together by holey grids with minimal solid support. Within these superlattices, NP building blocks are closely packed and have strong plasmonic coupling interactions; hence, we termed such freestanding materials ‘plasmene nanosheets’. Using the desired NP building blocks as starting material, we describe the detailed fabrication protocol, including NP surface functionalization by thiolated polystyrene and the self-assembly of NPs at the air–water interface. We also discuss various characterization approaches for checking the quality and optical properties of the as-obtained plasmene nanosheets: optical microscopy, spectrophotometry, transmission/scanning electron microscopy (TEM/SEM) and atomic force microscopy (AFM). With regard to different constituent building blocks, the key experimental parameters, including NP concentration and volume, are summarized to guide the successful fabrication of specific types of plasmene nanosheets. This protocol, from initial NP synthesis to the final fabrication and characterization, takes ~33.5 h.",
author = "Dashen Dong and Runfang Fu and Qianqian Shi and Wenlong Cheng",
year = "2019",
doi = "10.1038/s41596-019-0200-4",
language = "English",
volume = "14",
journal = "Nature Protocols",
issn = "1754-2189",
publisher = "Nature Publishing Group",

}

Self-assembly and characterization of 2D plasmene nanosheets. / Dong, Dashen; Fu, Runfang; Shi, Qianqian; Cheng, Wenlong.

In: Nature Protocols, Vol. 14, 2019.

Research output: Contribution to journalArticleOtherpeer-review

TY - JOUR

T1 - Self-assembly and characterization of 2D plasmene nanosheets

AU - Dong, Dashen

AU - Fu, Runfang

AU - Shi, Qianqian

AU - Cheng, Wenlong

PY - 2019

Y1 - 2019

N2 - Freestanding plasmonic nanoparticle (NP) superlattice sheets are novel 2D nanomaterials with tailorable properties that enable their use for broad applications in sensing, anticounterfeit measures, ionic gating, nanophotonics and flat lenses. We recently developed a robust, yet general, two-step drying-mediated approach to produce freestanding monolayer, plasmonic NP superlattice sheets, which are typically held together by holey grids with minimal solid support. Within these superlattices, NP building blocks are closely packed and have strong plasmonic coupling interactions; hence, we termed such freestanding materials ‘plasmene nanosheets’. Using the desired NP building blocks as starting material, we describe the detailed fabrication protocol, including NP surface functionalization by thiolated polystyrene and the self-assembly of NPs at the air–water interface. We also discuss various characterization approaches for checking the quality and optical properties of the as-obtained plasmene nanosheets: optical microscopy, spectrophotometry, transmission/scanning electron microscopy (TEM/SEM) and atomic force microscopy (AFM). With regard to different constituent building blocks, the key experimental parameters, including NP concentration and volume, are summarized to guide the successful fabrication of specific types of plasmene nanosheets. This protocol, from initial NP synthesis to the final fabrication and characterization, takes ~33.5 h.

AB - Freestanding plasmonic nanoparticle (NP) superlattice sheets are novel 2D nanomaterials with tailorable properties that enable their use for broad applications in sensing, anticounterfeit measures, ionic gating, nanophotonics and flat lenses. We recently developed a robust, yet general, two-step drying-mediated approach to produce freestanding monolayer, plasmonic NP superlattice sheets, which are typically held together by holey grids with minimal solid support. Within these superlattices, NP building blocks are closely packed and have strong plasmonic coupling interactions; hence, we termed such freestanding materials ‘plasmene nanosheets’. Using the desired NP building blocks as starting material, we describe the detailed fabrication protocol, including NP surface functionalization by thiolated polystyrene and the self-assembly of NPs at the air–water interface. We also discuss various characterization approaches for checking the quality and optical properties of the as-obtained plasmene nanosheets: optical microscopy, spectrophotometry, transmission/scanning electron microscopy (TEM/SEM) and atomic force microscopy (AFM). With regard to different constituent building blocks, the key experimental parameters, including NP concentration and volume, are summarized to guide the successful fabrication of specific types of plasmene nanosheets. This protocol, from initial NP synthesis to the final fabrication and characterization, takes ~33.5 h.

UR - http://www.scopus.com/inward/record.url?scp=85070803179&partnerID=8YFLogxK

U2 - 10.1038/s41596-019-0200-4

DO - 10.1038/s41596-019-0200-4

M3 - Article

VL - 14

JO - Nature Protocols

JF - Nature Protocols

SN - 1754-2189

ER -