Self-assembled InN micro-mushrooms by upside-down pendeoepitaxy

A. T M Golam Sarwar, Fan Yang, Bryan D. Esser, Thomas F. Kent, David W. McComb, Roberto C. Myers

Research output: Contribution to journalArticleResearchpeer-review

5 Citations (Scopus)


Self-assembly of hexagonal InN micro-mushrooms on Si (111) substrates by molecular beam epitaxy is reported. Scanning electron microscopy (SEM) reveals hexagonal mushroom caps with smooth top surfaces and a step-like morphology at the bottom surface. A detailed growth study along with SEM measurements reveals that an upside-down pendeoepitaxy mechanism underlies the formation of these structures. Cryogenic temperature photoluminescence measurements on the InN disks show a dominant band-to-acceptor recombination peak at 0.68 eV. Cross-section annular bright field (ABF-) scanning transmission electron microscopy (STEM) reveals that the growth of these structures occurs along the [0001¯] crystallographic orientation (N-face). Plan-view high angle annular dark field (HAADF) STEM in the center of the micro-disks reveals a hexagonal lattice indicative of stacking faults. However, at the outskirt of the micro-disk, surprisingly, a honeycomb lattice is observed in plan view STEM indicating a perfect freestanding Wurtzite InN disk that is free of stacking faults. This result opens a pathway for realizing strain-free, freestanding InN substrates.

Original languageEnglish
Pages (from-to)90-97
Number of pages8
JournalJournal of Crystal Growth
Publication statusPublished - 1 Jun 2016
Externally publishedYes


  • A1. Nanostructures
  • A1. Planar defects
  • A3. Pendeoepitaxy
  • B1. Nitrides
  • B2. Semiconducting indium compounds

Cite this