Abstract
A search is presented for new high-mass resonances decaying into electron or muon pairs. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 36 fb−1. Observations are in agreement with standard model expectations. Upper limits on the product of a new resonance production cross section and branching fraction to dileptons are calculated in a model-independent manner. This permits the interpretation of the limits in models predicting a narrow dielectron or dimuon resonance. A scan of different intrinsic width hypotheses is performed. Limits are set on the masses of various hypothetical particles. For the Z′ SSM (Z′ ψ) particle, which arises in the sequential standard model (superstring-inspired model), a lower mass limit of 4.50 (3.90) TeV is set at 95% confidence level. The lightest Kaluza-Klein graviton arising in the Randall-Sundrum model of extra dimensions, with coupling parameters k/MPl of 0.01, 0.05, and 0.10, is excluded at 95% confidence level below 2.10, 3.65, and 4.25 TeV, respectively. In a simplified model of dark matter production via a vector or axial vector mediator, limits at 95% confidence level are obtained on the masses of the dark matter particle and its mediator.
Original language | English |
---|---|
Article number | 120 |
Pages (from-to) | 1-43 |
Number of pages | 43 |
Journal | Journal of High Energy Physics |
Volume | 2018 |
Issue number | 6 |
DOIs | |
Publication status | Published - 22 Jun 2018 |
Keywords
- Beyond Standard Model
- Hadron-Hadron scattering (experiments)
- Lepton production
- Particle and resonance production
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Journal of High Energy Physics, Vol. 2018, No. 6, 120, 22.06.2018, p. 1-43.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Search for high-mass resonances in dilepton final states in proton-proton collisions at √s = 13 TeV
AU - Sirunyan, A. M.
AU - Tumasyan, A.
AU - Adam, W.
AU - Ambrogi, F.
AU - Asilar, E.
AU - Bergauer, T.
AU - Brandstetter, J.
AU - Brondolin, E.
AU - Dragicevic, M.
AU - Erö, J.
AU - Escalante Del Valle, A.
AU - Flechl, M.
AU - Friedl, M.
AU - Frühwirth, R.
AU - Ghete, V. M.
AU - Grossmann, J.
AU - Hrubec, J.
AU - Jeitler, M.
AU - König, A.
AU - Krammer, N.
AU - Krätschmer, I.
AU - Liko, D.
AU - Madlener, T.
AU - Mikulec, I.
AU - Pree, E.
AU - Rad, N.
AU - Rohringer, H.
AU - Schieck, J.
AU - Schöfbeck, R.
AU - Spanring, M.
AU - Spitzbart, D.
AU - Taurok, A.
AU - Waltenberger, W.
AU - Wittmann, J.
AU - Wulz, C. E.
AU - Zarucki, M.
AU - Chekhovsky, V.
AU - Mossolov, V.
AU - Suarez Gonzalez, J.
AU - De Wolf, E. A.
AU - Di Croce, D.
AU - Janssen, X.
AU - Lauwers, J.
AU - Pieters, M.
AU - Van De Klundert, M.
AU - Van Haevermaet, H.
AU - Van Mechelen, P.
AU - Van Remortel, N.
AU - Abu Zeid, S.
AU - Blekman, F.
AU - D’hondt, J.
AU - De Bruyn, I.
AU - De Clercq, J.
AU - Deroover, K.
AU - Flouris, G.
AU - Lontkovskyi, D.
AU - Lowette, S.
AU - Marchesini, I.
AU - Moortgat, S.
AU - Moreels, L.
AU - Python, Q.
AU - Skovpen, K.
AU - Tavernier, S.
AU - Van Doninck, W.
AU - Van Mulders, P.
AU - Van Parijs, I.
AU - Beghin, D.
AU - Bilin, B.
AU - Brun, H.
AU - Clerbaux, B.
AU - De Lentdecker, G.
AU - Delannoy, H.
AU - Dorney, B.
AU - Fasanella, G.
AU - Favart, L.
AU - Goldouzian, R.
AU - Grebenyuk, A.
AU - Kalsi, A. K.
AU - Lenzi, T.
AU - Luetic, J.
AU - Seva, T.
AU - Starling, E.
AU - Vander Velde, C.
AU - Vanlaer, P.
AU - Vannerom, D.
AU - Yonamine, R.
AU - Cornelis, T.
AU - Dobur, D.
AU - Fagot, A.
AU - Gul, M.
AU - Khvastunov, I.
AU - Poyraz, D.
AU - Roskas, C.
AU - Trocino, D.
AU - Tytgat, M.
AU - Verbeke, W.
AU - Vermassen, B.
AU - Vit, M.
AU - Zaganidis, N.
AU - Bakhshiansohi, H.
AU - Bondu, O.
AU - Brochet, S.
AU - Bruno, G.
AU - Caputo, C.
AU - Caudron, A.
AU - David, P.
AU - De Visscher, S.
AU - Delaere, C.
AU - Delcourt, M.
AU - Francois, B.
AU - Giammanco, A.
AU - Krintiras, G.
AU - Lemaitre, V.
AU - Magitteri, A.
AU - Mertens, A.
AU - Musich, M.
AU - Piotrzkowski, K.
AU - Quertenmont, L.
AU - Saggio, A.
AU - Vidal Marono, M.
AU - Wertz, S.
AU - Zobec, J.
AU - Aldá Júnior, W. L.
AU - Alves, F. L.
AU - Alves, G. A.
AU - Brito, L.
AU - Correia Silva, G.
AU - Hensel, C.
AU - Moraes, A.
AU - Pol, M. E.
AU - Rebello Teles, P.
AU - Belchior Batista Das Chagas, E.
AU - Carvalho, W.
AU - Chinellato, J.
AU - Coelho, E.
AU - Da Costa, E. M.
AU - Da Silveira, G. G.
AU - De Jesus Damiao, D.
AU - Fonseca De Souza, S.
AU - Malbouisson, H.
AU - Medina Jaime, M.
AU - Melo De Almeida, M.
AU - Mora Herrera, C.
AU - Mundim, L.
AU - Nogima, H.
AU - Sanchez Rosas, L. J.
AU - Santoro, A.
AU - Sznajder, A.
AU - Thiel, M.
AU - Tonelli Manganote, E. J.
AU - Torres Da Silva De Araujo, F.
AU - Vilela Pereira, A.
AU - Ahuja, S.
AU - Bernardes, C. A.
AU - Calligaris, L.
AU - Fernandez Perez Tomei, T. R.
AU - Gregores, E. M.
AU - Mercadante, P. G.
AU - Novaes, S. F.
AU - Padula, Sandra S.
AU - Romero Abad, D.
AU - Ruiz Vargas, J. C.
AU - Aleksandrov, A.
AU - Hadjiiska, R.
AU - Iaydjiev, P.
AU - Marinov, A.
AU - Misheva, M.
AU - Rodozov, M.
AU - Shopova, M.
AU - Sultanov, G.
AU - Dimitrov, A.
AU - Litov, L.
AU - Pavlov, B.
AU - Petkov, P.
AU - Fang, W.
AU - Gao, X.
AU - Yuan, L.
AU - Ahmad, M.
AU - Bian, J. G.
AU - Chen, G. M.
AU - Chen, H. S.
AU - Chen, M.
AU - Chen, Y.
AU - Jiang, C. H.
AU - Leggat, D.
AU - Liao, H.
AU - Liu, Z.
AU - Romeo, F.
AU - Shaheen, S. M.
AU - Spiezia, A.
AU - Tao, J.
AU - Wang, C.
AU - Wang, Z.
AU - Yazgan, E.
AU - Zhang, H.
AU - Zhao, J.
AU - Ban, Y.
AU - Chen, G.
AU - Li, J.
AU - Li, Q.
AU - Liu, S.
AU - Mao, Y.
AU - Qian, S. J.
AU - Wang, D.
AU - Xu, Z.
AU - Wang, Y.
AU - Avila, C.
AU - Cabrera, A.
AU - Carrillo Montoya, C. A.
AU - Chaparro Sierra, L. F.
AU - Florez, C.
AU - González Hernández, C. F.
AU - Segura Delgado, M. A.
AU - Courbon, B.
AU - Godinovic, N.
AU - Lelas, D.
AU - Puljak, I.
AU - Ribeiro Cipriano, P. M.
AU - Sculac, T.
AU - Antunovic, Z.
AU - Kovac, M.
AU - Brigljevic, V.
AU - Ferencek, D.
AU - Kadija, K.
AU - Mesic, B.
AU - Starodumov, A.
AU - Susa, T.
AU - Ather, M. W.
AU - Attikis, A.
AU - Mavromanolakis, G.
AU - Mousa, J.
AU - Nicolaou, C.
AU - Ptochos, F.
AU - Razis, P. A.
AU - Rykaczewski, H.
AU - Finger, M.
AU - Finger, M.
AU - Carrera Jarrin, E.
AU - Abdalla, H.
AU - Assran, Y.
AU - Elgammal, S.
AU - Bhowmik, S.
AU - Dewanjee, R. K.
AU - Kadastik, M.
AU - Perrini, L.
AU - Raidal, M.
AU - Veelken, C.
AU - Eerola, P.
AU - Nash, J.
AU - Laird, E.
AU - CMS Collaboration
PY - 2018/6/22
Y1 - 2018/6/22
N2 - A search is presented for new high-mass resonances decaying into electron or muon pairs. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 36 fb−1. Observations are in agreement with standard model expectations. Upper limits on the product of a new resonance production cross section and branching fraction to dileptons are calculated in a model-independent manner. This permits the interpretation of the limits in models predicting a narrow dielectron or dimuon resonance. A scan of different intrinsic width hypotheses is performed. Limits are set on the masses of various hypothetical particles. For the Z′ SSM (Z′ ψ) particle, which arises in the sequential standard model (superstring-inspired model), a lower mass limit of 4.50 (3.90) TeV is set at 95% confidence level. The lightest Kaluza-Klein graviton arising in the Randall-Sundrum model of extra dimensions, with coupling parameters k/MPl of 0.01, 0.05, and 0.10, is excluded at 95% confidence level below 2.10, 3.65, and 4.25 TeV, respectively. In a simplified model of dark matter production via a vector or axial vector mediator, limits at 95% confidence level are obtained on the masses of the dark matter particle and its mediator.
AB - A search is presented for new high-mass resonances decaying into electron or muon pairs. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 36 fb−1. Observations are in agreement with standard model expectations. Upper limits on the product of a new resonance production cross section and branching fraction to dileptons are calculated in a model-independent manner. This permits the interpretation of the limits in models predicting a narrow dielectron or dimuon resonance. A scan of different intrinsic width hypotheses is performed. Limits are set on the masses of various hypothetical particles. For the Z′ SSM (Z′ ψ) particle, which arises in the sequential standard model (superstring-inspired model), a lower mass limit of 4.50 (3.90) TeV is set at 95% confidence level. The lightest Kaluza-Klein graviton arising in the Randall-Sundrum model of extra dimensions, with coupling parameters k/MPl of 0.01, 0.05, and 0.10, is excluded at 95% confidence level below 2.10, 3.65, and 4.25 TeV, respectively. In a simplified model of dark matter production via a vector or axial vector mediator, limits at 95% confidence level are obtained on the masses of the dark matter particle and its mediator.
KW - Beyond Standard Model
KW - Hadron-Hadron scattering (experiments)
KW - Lepton production
KW - Particle and resonance production
UR - http://www.scopus.com/inward/record.url?scp=85064718907&partnerID=8YFLogxK
U2 - 10.1007/JHEP06(2018)120
DO - 10.1007/JHEP06(2018)120
M3 - Article
AN - SCOPUS:85064718907
SN - 1126-6708
VL - 2018
SP - 1
EP - 43
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 6
M1 - 120
ER -