Abstract
According to general relativity a perturbed black hole will settle to a stationary configuration by the emission of gravitational radiation. Such a perturbation will occur, for example, in the coalescence of a black hole binary, following their inspiral and subsequent merger. At late times the waveform is a superposition of quasinormal modes, which we refer to as the ringdown. The dominant mode is expected to be the fundamental mode, l=m=2. Since this is a well-known waveform, matched filtering can be implemented to search for this signal using LIGO data. We present a search for gravitational waves from black hole ringdowns in the fourth LIGO science run S4, during which LIGO was sensitive to the dominant mode of perturbed black holes with masses in the range of 10M□ to 500M□, the regime of intermediate-mass black holes, to distances up to 300□Mpc. We present a search for gravitational waves from black hole ringdowns using data from S4. No gravitational wave candidates were found; we place a 90%-confidence upper limit on the rate of ringdowns from black holes with mass between 85M□ and 390M□ in the local universe, assuming a uniform distribution of sources, of 3.2×10-5yr-1Mpc-3=1.6×10-3yr- 1L10-1,where L10 is 1010 times the solar blue-light luminosity.
Original language | English |
---|---|
Article number | 062001 |
Journal | Physical Review D |
Volume | 80 |
Issue number | 6 |
DOIs | |
Publication status | Published - 9 Sept 2009 |
Externally published | Yes |
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review D, Vol. 80, No. 6, 062001, 09.09.2009.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data
AU - Abbott, B. P.
AU - Abbott, R.
AU - Adhikari, R.
AU - Ajith, P.
AU - Allen, B.
AU - Allen, G.
AU - Amin, R. S.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Arain, M. A.
AU - Araya, M.
AU - Armandula, H.
AU - Armor, P.
AU - Aso, Y.
AU - Aston, S.
AU - Aufmuth, P.
AU - Aulbert, C.
AU - Babak, S.
AU - Baker, P.
AU - Ballmer, S.
AU - Barker, C.
AU - Barker, D.
AU - Barr, B.
AU - Barriga, P.
AU - Barsotti, L.
AU - Barton, M. A.
AU - Bartos, I.
AU - Bassiri, R.
AU - Bastarrika, M.
AU - Behnke, B.
AU - Benacquista, M.
AU - Betzwieser, J.
AU - Beyersdorf, P. T.
AU - Bilenko, I. A.
AU - Billingsley, G.
AU - Biswas, R.
AU - Black, E.
AU - Blackburn, J. K.
AU - Blackburn, L.
AU - Blair, D.
AU - Bland, B.
AU - Bodiya, T. P.
AU - Bogue, L.
AU - Bork, R.
AU - Boschi, V.
AU - Bose, S.
AU - Brady, P. R.
AU - Braginsky, V. B.
AU - Brau, J. E.
AU - Bridges, D. O.
AU - Brinkmann, M.
AU - Brooks, A. F.
AU - Brown, D. A.
AU - Brummit, A.
AU - Brunet, G.
AU - Bullington, A.
AU - Buonanno, A.
AU - Burmeister, O.
AU - Byer, R. L.
AU - Cadonati, L.
AU - Camp, J. B.
AU - Cannizzo, J.
AU - Cannon, K. C.
AU - Cao, J.
AU - Cardenas, L.
AU - Cardoso, V.
AU - Caride, S.
AU - Castaldi, G.
AU - Caudill, S.
AU - Cavaglià, M.
AU - Cepeda, C.
AU - Chalermsongsak, T.
AU - Chalkley, E.
AU - Charlton, P.
AU - Chatterji, S.
AU - Chelkowski, S.
AU - Chen, Y.
AU - Christensen, N.
AU - Chung, C. T.Y.
AU - Clark, D.
AU - Clark, J.
AU - Clayton, J. H.
AU - Cokelaer, T.
AU - Colacino, C. N.
AU - Conte, R.
AU - Cook, D.
AU - Corbitt, T. R.C.
AU - Cornish, N.
AU - Coward, D.
AU - Coyne, D. C.
AU - Creighton, J. D.E.
AU - Creighton, T. D.
AU - Cruise, A. M.
AU - Culter, R. M.
AU - Cumming, A.
AU - Cunningham, L.
AU - Danilishin, S. L.
AU - Danzmann, K.
AU - Daudert, B.
AU - Davies, G.
AU - Daw, E. J.
AU - Debra, D.
AU - Degallaix, J.
AU - Dergachev, V.
AU - Desai, S.
AU - Desalvo, R.
AU - Dhurandhar, S.
AU - Díaz, M.
AU - Dietz, A.
AU - Donovan, F.
AU - Dooley, K. L.
AU - Doomes, E. E.
AU - Drever, R. W.P.
AU - Dueck, J.
AU - Duke, I.
AU - Dumas, J. C.
AU - Dwyer, J. G.
AU - Echols, C.
AU - Edgar, M.
AU - Effler, A.
AU - Ehrens, P.
AU - Espinoza, E.
AU - Etzel, T.
AU - Evans, M.
AU - Evans, T.
AU - Fairhurst, S.
AU - Faltas, Y.
AU - Fan, Y.
AU - Fazi, D.
AU - Fehrmann, H.
AU - Finn, L. S.
AU - Flasch, K.
AU - Foley, S.
AU - Forrest, C.
AU - Fotopoulos, N.
AU - Franzen, A.
AU - Frede, M.
AU - Frei, M.
AU - Frei, Z.
AU - Freise, A.
AU - Frey, R.
AU - Fricke, T.
AU - Fritschel, P.
AU - Frolov, V. V.
AU - Fyffe, M.
AU - Galdi, V.
AU - Garofoli, J. A.
AU - Gholami, I.
AU - Giaime, J. A.
AU - Giampanis, S.
AU - Giardina, K. D.
AU - Goda, K.
AU - Goetz, E.
AU - Goggin, L. M.
AU - González, G.
AU - Gorodetsky, M. L.
AU - Goßler, S.
AU - Gouaty, R.
AU - Grant, A.
AU - Gras, S.
AU - Gray, C.
AU - Gray, M.
AU - Greenhalgh, R. J.S.
AU - Gretarsson, A. M.
AU - Grimaldi, F.
AU - Grosso, R.
AU - Grote, H.
AU - Grunewald, S.
AU - Guenther, M.
AU - Gustafson, E. K.
AU - Gustafson, R.
AU - Hage, B.
AU - Hallam, J. M.
AU - Hammer, D.
AU - Hammond, G. D.
AU - Hanna, C.
AU - Hanson, J.
AU - Harms, J.
AU - Harry, G. M.
AU - Harry, I. W.
AU - Harstad, E. D.
AU - Haughian, K.
AU - Hayama, K.
AU - Heefner, J.
AU - Heng, I. S.
AU - Heptonstall, A.
AU - Hewitson, M.
AU - Hild, S.
AU - Hirose, E.
AU - Hoak, D.
AU - Hodge, K. A.
AU - Holt, K.
AU - Hosken, D. J.
AU - Hough, J.
AU - Hoyland, D.
AU - Hughey, B.
AU - Huttner, S. H.
AU - Ingram, D. R.
AU - Isogai, T.
AU - Ito, M.
AU - Ivanov, A.
AU - Johnson, B.
AU - Johnson, W. W.
AU - Jones, D. I.
AU - Jones, G.
AU - Jones, R.
AU - Ju, L.
AU - Kalmus, P.
AU - Kalogera, V.
AU - Kandhasamy, S.
AU - Kanner, J.
AU - Kasprzyk, D.
AU - Katsavounidis, E.
AU - Kawabe, K.
AU - Kawamura, S.
AU - Kawazoe, F.
AU - Kells, W.
AU - Keppel, D. G.
AU - Khalaidovski, A.
AU - Khalili, F. Y.
AU - Khan, R.
AU - Khazanov, E.
AU - King, P.
AU - Kissel, J. S.
AU - Klimenko, S.
AU - Kokeyama, K.
AU - Kondrashov, V.
AU - Kopparapu, R.
AU - Koranda, S.
AU - Kozak, D.
AU - Krishnan, B.
AU - Kumar, R.
AU - Kwee, P.
AU - Lam, P. K.
AU - Landry, M.
AU - Lantz, B.
AU - Lazzarini, A.
AU - Lei, H.
AU - Lei, M.
AU - Leindecker, N.
AU - Leonor, I.
AU - Li, C.
AU - Lin, H.
AU - Lindquist, P. E.
AU - Littenberg, T. B.
AU - Lockerbie, N. A.
AU - Lodhia, D.
AU - Longo, M.
AU - Lormand, M.
AU - Mandel, I.
AU - The LIGO Scientific Collaboration
PY - 2009/9/9
Y1 - 2009/9/9
N2 - According to general relativity a perturbed black hole will settle to a stationary configuration by the emission of gravitational radiation. Such a perturbation will occur, for example, in the coalescence of a black hole binary, following their inspiral and subsequent merger. At late times the waveform is a superposition of quasinormal modes, which we refer to as the ringdown. The dominant mode is expected to be the fundamental mode, l=m=2. Since this is a well-known waveform, matched filtering can be implemented to search for this signal using LIGO data. We present a search for gravitational waves from black hole ringdowns in the fourth LIGO science run S4, during which LIGO was sensitive to the dominant mode of perturbed black holes with masses in the range of 10M□ to 500M□, the regime of intermediate-mass black holes, to distances up to 300□Mpc. We present a search for gravitational waves from black hole ringdowns using data from S4. No gravitational wave candidates were found; we place a 90%-confidence upper limit on the rate of ringdowns from black holes with mass between 85M□ and 390M□ in the local universe, assuming a uniform distribution of sources, of 3.2×10-5yr-1Mpc-3=1.6×10-3yr- 1L10-1,where L10 is 1010 times the solar blue-light luminosity.
AB - According to general relativity a perturbed black hole will settle to a stationary configuration by the emission of gravitational radiation. Such a perturbation will occur, for example, in the coalescence of a black hole binary, following their inspiral and subsequent merger. At late times the waveform is a superposition of quasinormal modes, which we refer to as the ringdown. The dominant mode is expected to be the fundamental mode, l=m=2. Since this is a well-known waveform, matched filtering can be implemented to search for this signal using LIGO data. We present a search for gravitational waves from black hole ringdowns in the fourth LIGO science run S4, during which LIGO was sensitive to the dominant mode of perturbed black holes with masses in the range of 10M□ to 500M□, the regime of intermediate-mass black holes, to distances up to 300□Mpc. We present a search for gravitational waves from black hole ringdowns using data from S4. No gravitational wave candidates were found; we place a 90%-confidence upper limit on the rate of ringdowns from black holes with mass between 85M□ and 390M□ in the local universe, assuming a uniform distribution of sources, of 3.2×10-5yr-1Mpc-3=1.6×10-3yr- 1L10-1,where L10 is 1010 times the solar blue-light luminosity.
UR - http://www.scopus.com/inward/record.url?scp=70349835598&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.80.062001
DO - 10.1103/PhysRevD.80.062001
M3 - Article
AN - SCOPUS:70349835598
SN - 1550-7998
VL - 80
JO - Physical Review D
JF - Physical Review D
IS - 6
M1 - 062001
ER -