Abstract
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2.
Original language | English |
---|---|
Article number | 149 |
Journal | The Astrophysical Journal |
Volume | 883 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Oct 2019 |
Access to Document
Other files and links
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: The Astrophysical Journal, Vol. 883, No. 2, 149, 01.10.2019.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abraham, S.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Allen, G.
AU - Allocca, A.
AU - Aloy, M. A.
AU - Altin, P. A.
AU - Amato, A.
AU - Anand, S.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Angelova, S. V.
AU - Antier, S.
AU - Appert, S.
AU - Arai, K.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arène, M.
AU - Arnaud, N.
AU - Aronson, S. M.
AU - Arun, K. G.
AU - Ascenzi, S.
AU - Ashton, G.
AU - Aston, S. M.
AU - Astone, P.
AU - Aubin, F.
AU - Aufmuth, P.
AU - Aultoneal, K.
AU - Austin, C.
AU - Avendano, V.
AU - Avila-Alvarez, A.
AU - Babak, S.
AU - Bacon, P.
AU - Badaracco, F.
AU - Bader, M. K.M.
AU - Bae, S.
AU - Baird, J.
AU - Baker, P. T.
AU - Baldaccini, F.
AU - Ballardin, G.
AU - Ballmer, S. W.
AU - Bals, A.
AU - Banagiri, S.
AU - Barayoga, J. C.
AU - Barbieri, C.
AU - Barclay, S. E.
AU - Barish, B. C.
AU - Barker, D.
AU - Barkett, K.
AU - Barnum, S.
AU - Barone, F.
AU - Barr, B.
AU - Barsotti, L.
AU - Barsuglia, M.
AU - Barta, D.
AU - Bartlett, J.
AU - Bartos, I.
AU - Bassiri, R.
AU - Basti, A.
AU - Bawaj, M.
AU - Bayley, J. C.
AU - Bazzan, M.
AU - Bécsy, B.
AU - Bejger, M.
AU - Belahcene, I.
AU - Bell, A. S.
AU - Beniwal, D.
AU - Benjamin, M. G.
AU - Bergmann, G.
AU - Bernuzzi, S.
AU - Berry, C. P.L.
AU - Bersanetti, D.
AU - Bertolini, A.
AU - Betzwieser, J.
AU - Bhandare, R.
AU - Bidler, J.
AU - Biggs, E.
AU - Bilenko, I. A.
AU - Bilgili, S. A.
AU - Billingsley, G.
AU - Birney, R.
AU - Birnholtz, O.
AU - Biscans, S.
AU - Bischi, M.
AU - Biscoveanu, S.
AU - Bisht, A.
AU - Bitossi, M.
AU - Bizouard, M. A.
AU - Blackburn, J. K.
AU - Blackman, J.
AU - Blair, C. D.
AU - Blair, D. G.
AU - Blair, R. M.
AU - Bloemen, S.
AU - Bobba, F.
AU - Bode, N.
AU - Boer, M.
AU - Boetzel, Y.
AU - Bogaert, G.
AU - Bondu, F.
AU - Bonnand, R.
AU - Booker, P.
AU - Boom, B. A.
AU - Bork, R.
AU - Boschi, V.
AU - Bose, S.
AU - Bossilkov, V.
AU - Bosveld, J.
AU - Bouffanais, Y.
AU - Bozzi, A.
AU - Bradaschia, C.
AU - Brady, P. R.
AU - Bramley, A.
AU - Branchesi, M.
AU - Brau, J. E.
AU - Breschi, M.
AU - Briant, T.
AU - Briggs, J. H.
AU - Brighenti, F.
AU - Brillet, A.
AU - Brinkmann, M.
AU - Brockill, P.
AU - Brooks, A. F.
AU - Brooks, J.
AU - Brown, D. D.
AU - Brunett, S.
AU - Buikema, A.
AU - Bulik, T.
AU - Bulten, H. J.
AU - Buonanno, A.
AU - Buskulic, D.
AU - Buy, C.
AU - Byer, R. L.
AU - Cabero, M.
AU - Cadonati, L.
AU - Cagnoli, G.
AU - Cahillane, C.
AU - Bustillo, J. Calderón
AU - Callister, T. A.
AU - Calloni, E.
AU - Camp, J. B.
AU - Campbell, W. A.
AU - Canepa, M.
AU - Cannon, K. C.
AU - Cao, H.
AU - Cao, J.
AU - Carapella, G.
AU - Carbognani, F.
AU - Caride, S.
AU - Carney, M. F.
AU - Carullo, G.
AU - Diaz, J. Casanueva
AU - Casentini, C.
AU - Caudill, S.
AU - Cavaglià, M.
AU - Cavalier, F.
AU - Cavalieri, R.
AU - Cella, G.
AU - Cerdá-Durán, P.
AU - Cesarini, E.
AU - Chaibi, O.
AU - Chakravarti, K.
AU - Chamberlin, S. J.
AU - Chan, M.
AU - Chao, S.
AU - Charlton, P.
AU - Chase, E. A.
AU - Chassande-Mottin, E.
AU - Chatterjee, D.
AU - Chaturvedi, M.
AU - Cheeseboro, B. D.
AU - Chen, H. Y.
AU - Chen, X.
AU - Chen, Y.
AU - Cheng, H. P.
AU - Cheong, C. K.
AU - Chia, H. Y.
AU - Chiadini, F.
AU - Chincarini, A.
AU - Chiummo, A.
AU - Cho, G.
AU - Cho, H. S.
AU - Cho, M.
AU - Christensen, N.
AU - Chu, Q.
AU - Chua, S.
AU - Chung, K. W.
AU - Chung, S.
AU - Ciani, G.
AU - Cieślar, M.
AU - Ciobanu, A. A.
AU - Ciolfi, R.
AU - Cipriano, F.
AU - Cirone, A.
AU - Clara, F.
AU - Clark, J. A.
AU - Clearwater, P.
AU - Cleva, F.
AU - Coccia, E.
AU - Cohadon, P. F.
AU - Cohen, D.
AU - Colleoni, M.
AU - Collette, C. G.
AU - Collins, C.
AU - Colpi, M.
AU - Cominsky, L. R.
AU - Constancio, M.
AU - Conti, L.
AU - Cooper, S. J.
AU - Corban, P.
AU - Corbitt, T. R.
AU - Cordero-Carrión, I.
AU - Corezzi, S.
AU - Corley, K. R.
AU - Cornish, N.
AU - Corre, D.
AU - Corsi, A.
AU - Cortese, S.
AU - Costa, C. A.
AU - Cotesta, R.
AU - Coughlin, M. W.
AU - Coughlin, S. B.
AU - Coulon, J. P.
AU - Countryman, S. T.
AU - Easter, P. J.
AU - Goncharov, B.
AU - Lasky, P. D.
AU - Levin, Y.
AU - Meadors, G. D.
AU - Sammut, L.
AU - Smith, R. J.E.
AU - Talbot, C.
AU - Thrane, E.
AU - Whittle, C.
AU - Zhu, X. J.
AU - Hernandez Vivanco, Francisco Javier
AU - The LIGO Scientific Collaboration
AU - Huebner, Moritz
AU - Lin, Fuhui
AU - Payne, Ethan
AU - Sarin, Nikhil
PY - 2019/10/1
Y1 - 2019/10/1
N2 - When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2.
AB - When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2.
UR - http://www.scopus.com/inward/record.url?scp=85073742510&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab3c2d
DO - 10.3847/1538-4357/ab3c2d
M3 - Article
AN - SCOPUS:85073742510
SN - 0004-637X
VL - 883
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 2
M1 - 149
ER -