SCL interacts with VEGF to suppress apoptosis at the onset of hematopoiesis

Richard Martin, Rachid Lahlil, Annette Damert, Lucile Miquerol, Andras Nagy, Gordon Keller, Trang Hoang

Research output: Contribution to journalArticleResearchpeer-review

34 Citations (Scopus)


During development, hematopoiesis initiates in the yolk sac through a process that depends on VEGF/Flk1 signaling and on the function of the SCL/Tal1 transcription factor. Here we show that VEGF modifies the developmental potential of primitive erythroid progenitors and prolongs their life span. Furthermore, the survival of yolk sac erythrocytes in vivo depends on the dose of VEGF. Interestingly, in Vegflo/lo embryos carrying a hypomorph allele, Flk1-positive cells reach the yolk sac at E8.5, but are severely compromised in their ability to generate primitive erythroid precursors. These observations indicate that during embryonic development, different thresholds of VEGF are required for the migration and clonal expansion of hematopoietic precursors. The near absence of primitive erythroid precursors in Vegflo/lo embryos correlates with low levels of Scl in the yolk sac. Strikingly, gain-of-function of SCL partially complements the hematopoietic defect caused by the hypomorph Vegflo allele, and re-establishes the survival of erythroid cells and the expression of erythroid genes (Gata1 and βH1). This indicates that SCL functions downstream of VEGF to ensure an expansion of the hematopoietic compartment.

Original languageEnglish
Pages (from-to)693-702
Number of pages10
Issue number3
Publication statusPublished - Feb 2004
Externally publishedYes


  • ES cell differentiation
  • Hematopoiesis
  • Mouse
  • Primitive erythropoiesis
  • SCL
  • TAL1
  • VEGF

Cite this