Abstract
Pulmonary inflammation in chronic obstructive pulmonary disease (COPD) is characterized by both innate and adaptive immune responses; however, their specific roles in the pathogenesis of COPD are unclear. Therefore, we investigated the roles of T and B lymphocytes and group 2 innate lymphoid cells (ILC2s) in airway inflammation and remodelling, and lung function in an experimental model of COPD using mice that specifically lack these cells (Rag1 −/− and Rora fl/fl Il7r Cre [ILC2-deficient] mice). Wild-type (WT) C57BL/6 mice, Rag1 −/− , and Rora fl/fl Il7r Cre mice were exposed to cigarette smoke (CS; 12 cigarettes twice a day, 5 days a week) for up to 12 weeks, and airway inflammation, airway remodelling (collagen deposition and alveolar enlargement), and lung function were assessed. WT, Rag1 −/− , and ILC2-deficient mice exposed to CS had similar levels of airway inflammation and impaired lung function. CS exposure increased small airway collagen deposition in WT mice. Rag1 −/− normal air- and CS-exposed mice had significantly increased collagen deposition compared to similarly exposed WT mice, which was associated with increases in IL-33, IL-13, and ILC2 numbers. CS-exposed Rora fl/fl Il7r Cre mice were protected from emphysema, but had increased IL-33/IL-13 expression and collagen deposition compared to WT CS-exposed mice. T/B lymphocytes and ILC2s play roles in airway collagen deposition/fibrosis, but not inflammation, in experimental COPD.
Original language | English |
---|---|
Pages (from-to) | 143-150 |
Number of pages | 8 |
Journal | Journal of Leukocyte Biology |
Volume | 105 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2019 |
Externally published | Yes |
Keywords
- COPD
- emphysema
- ILC2s
- inflammation
- remodelling
- T cells