Role of the second extracellular loop of the adenosine A1 receptor on allosteric modulator binding, signaling, and cooperativity

Anh T.N. Nguyen, Elizabeth A. Vecchio, Trayder Thomas, Toan D. Nguyen, Luigi Aurelio, Peter J. Scammells, Paul J. White, Patrick M. Sexton, Karen J. Gregory, Lauren T. May, Arthur Christopoulos

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Allosteric modulation of adenosine A1 receptors (A1ARs) offers a novel therapeutic approach for the treatment of numerous central and peripheral disorders; however, despite decades of research, there is a relative paucity of structural information regarding the A1AR allosteric site and mechanisms governing cooperativity with orthosteric ligands. We combined alanine-scanning mutagenesis of the A1AR second extracellular loop (ECL2) with radioligand binding and functional interaction assays to quantify effects on allosteric ligand affinity, cooperativity, and efficacy. Docking and molecular dynamics (MD) simulations were performed using an A1AR homology model based on an agonist-bound A2AAR structure. Substitution of E172ECL2 for alanine reduced the affinity of the allosteric modulators PD81723 and VCP171 for the unoccupied A1AR. Residues involved in cooperativity with the orthosteric agonist NECA were different in PD81723 and VCP171; positive cooperativity between PD81723 and NECA was reduced on alanine substitution of a number of ECL2 residues, including E170ECL2 and K173ECL2, whereas mutation of W146ECL2 and W156ECL2 decreased VCP171 cooperativity with NECA. Molecular modeling localized a likely allosteric pocket for both modulators to an extracellular vestibule that overlaps with a region used by orthosteric ligands as they transit into the canonical A1AR orthosteric site. MD simulations confirmed a key interaction between E172ECL2 and both modulators. Bound PD81723 is flanked by another residue, E170ECL2, which forms hydrogen bonds with adjacent K168ECL2 and K173ECL2. Collectively, our data suggest E172ECL2 is a key allosteric ligand-binding determinant, whereas hydrogen-bonding networks within the extracellular vestibule may facilitate the transmission of cooperativity between orthosteric and allosteric sites.

Original languageEnglish
Pages (from-to)715-725
Number of pages11
JournalMolecular Pharmacology
Volume90
Issue number6
DOIs
Publication statusPublished - 1 Dec 2016

Cite this

@article{13ad028605e84ec186d670a7553c0b4e,
title = "Role of the second extracellular loop of the adenosine A1 receptor on allosteric modulator binding, signaling, and cooperativity",
abstract = "Allosteric modulation of adenosine A1 receptors (A1ARs) offers a novel therapeutic approach for the treatment of numerous central and peripheral disorders; however, despite decades of research, there is a relative paucity of structural information regarding the A1AR allosteric site and mechanisms governing cooperativity with orthosteric ligands. We combined alanine-scanning mutagenesis of the A1AR second extracellular loop (ECL2) with radioligand binding and functional interaction assays to quantify effects on allosteric ligand affinity, cooperativity, and efficacy. Docking and molecular dynamics (MD) simulations were performed using an A1AR homology model based on an agonist-bound A2AAR structure. Substitution of E172ECL2 for alanine reduced the affinity of the allosteric modulators PD81723 and VCP171 for the unoccupied A1AR. Residues involved in cooperativity with the orthosteric agonist NECA were different in PD81723 and VCP171; positive cooperativity between PD81723 and NECA was reduced on alanine substitution of a number of ECL2 residues, including E170ECL2 and K173ECL2, whereas mutation of W146ECL2 and W156ECL2 decreased VCP171 cooperativity with NECA. Molecular modeling localized a likely allosteric pocket for both modulators to an extracellular vestibule that overlaps with a region used by orthosteric ligands as they transit into the canonical A1AR orthosteric site. MD simulations confirmed a key interaction between E172ECL2 and both modulators. Bound PD81723 is flanked by another residue, E170ECL2, which forms hydrogen bonds with adjacent K168ECL2 and K173ECL2. Collectively, our data suggest E172ECL2 is a key allosteric ligand-binding determinant, whereas hydrogen-bonding networks within the extracellular vestibule may facilitate the transmission of cooperativity between orthosteric and allosteric sites.",
author = "Nguyen, {Anh T.N.} and Vecchio, {Elizabeth A.} and Trayder Thomas and Nguyen, {Toan D.} and Luigi Aurelio and Scammells, {Peter J.} and White, {Paul J.} and Sexton, {Patrick M.} and Gregory, {Karen J.} and May, {Lauren T.} and Arthur Christopoulos",
year = "2016",
month = "12",
day = "1",
doi = "10.1124/mol.116.105015",
language = "English",
volume = "90",
pages = "715--725",
journal = "Molecular Pharmacology",
issn = "1521-0111",
publisher = "ACS Books",
number = "6",

}

Role of the second extracellular loop of the adenosine A1 receptor on allosteric modulator binding, signaling, and cooperativity. / Nguyen, Anh T.N.; Vecchio, Elizabeth A.; Thomas, Trayder; Nguyen, Toan D.; Aurelio, Luigi; Scammells, Peter J.; White, Paul J.; Sexton, Patrick M.; Gregory, Karen J.; May, Lauren T.; Christopoulos, Arthur.

In: Molecular Pharmacology, Vol. 90, No. 6, 01.12.2016, p. 715-725.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Role of the second extracellular loop of the adenosine A1 receptor on allosteric modulator binding, signaling, and cooperativity

AU - Nguyen, Anh T.N.

AU - Vecchio, Elizabeth A.

AU - Thomas, Trayder

AU - Nguyen, Toan D.

AU - Aurelio, Luigi

AU - Scammells, Peter J.

AU - White, Paul J.

AU - Sexton, Patrick M.

AU - Gregory, Karen J.

AU - May, Lauren T.

AU - Christopoulos, Arthur

PY - 2016/12/1

Y1 - 2016/12/1

N2 - Allosteric modulation of adenosine A1 receptors (A1ARs) offers a novel therapeutic approach for the treatment of numerous central and peripheral disorders; however, despite decades of research, there is a relative paucity of structural information regarding the A1AR allosteric site and mechanisms governing cooperativity with orthosteric ligands. We combined alanine-scanning mutagenesis of the A1AR second extracellular loop (ECL2) with radioligand binding and functional interaction assays to quantify effects on allosteric ligand affinity, cooperativity, and efficacy. Docking and molecular dynamics (MD) simulations were performed using an A1AR homology model based on an agonist-bound A2AAR structure. Substitution of E172ECL2 for alanine reduced the affinity of the allosteric modulators PD81723 and VCP171 for the unoccupied A1AR. Residues involved in cooperativity with the orthosteric agonist NECA were different in PD81723 and VCP171; positive cooperativity between PD81723 and NECA was reduced on alanine substitution of a number of ECL2 residues, including E170ECL2 and K173ECL2, whereas mutation of W146ECL2 and W156ECL2 decreased VCP171 cooperativity with NECA. Molecular modeling localized a likely allosteric pocket for both modulators to an extracellular vestibule that overlaps with a region used by orthosteric ligands as they transit into the canonical A1AR orthosteric site. MD simulations confirmed a key interaction between E172ECL2 and both modulators. Bound PD81723 is flanked by another residue, E170ECL2, which forms hydrogen bonds with adjacent K168ECL2 and K173ECL2. Collectively, our data suggest E172ECL2 is a key allosteric ligand-binding determinant, whereas hydrogen-bonding networks within the extracellular vestibule may facilitate the transmission of cooperativity between orthosteric and allosteric sites.

AB - Allosteric modulation of adenosine A1 receptors (A1ARs) offers a novel therapeutic approach for the treatment of numerous central and peripheral disorders; however, despite decades of research, there is a relative paucity of structural information regarding the A1AR allosteric site and mechanisms governing cooperativity with orthosteric ligands. We combined alanine-scanning mutagenesis of the A1AR second extracellular loop (ECL2) with radioligand binding and functional interaction assays to quantify effects on allosteric ligand affinity, cooperativity, and efficacy. Docking and molecular dynamics (MD) simulations were performed using an A1AR homology model based on an agonist-bound A2AAR structure. Substitution of E172ECL2 for alanine reduced the affinity of the allosteric modulators PD81723 and VCP171 for the unoccupied A1AR. Residues involved in cooperativity with the orthosteric agonist NECA were different in PD81723 and VCP171; positive cooperativity between PD81723 and NECA was reduced on alanine substitution of a number of ECL2 residues, including E170ECL2 and K173ECL2, whereas mutation of W146ECL2 and W156ECL2 decreased VCP171 cooperativity with NECA. Molecular modeling localized a likely allosteric pocket for both modulators to an extracellular vestibule that overlaps with a region used by orthosteric ligands as they transit into the canonical A1AR orthosteric site. MD simulations confirmed a key interaction between E172ECL2 and both modulators. Bound PD81723 is flanked by another residue, E170ECL2, which forms hydrogen bonds with adjacent K168ECL2 and K173ECL2. Collectively, our data suggest E172ECL2 is a key allosteric ligand-binding determinant, whereas hydrogen-bonding networks within the extracellular vestibule may facilitate the transmission of cooperativity between orthosteric and allosteric sites.

UR - http://www.scopus.com/inward/record.url?scp=84996553522&partnerID=8YFLogxK

U2 - 10.1124/mol.116.105015

DO - 10.1124/mol.116.105015

M3 - Article

VL - 90

SP - 715

EP - 725

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 1521-0111

IS - 6

ER -