Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis

Frank J. Liskaser, Rinaldo Bellomo, Matt Hayhoe, David Story, Stephanie Poustie, Benjamin Smith, Angela Letis, Martin Bennett

Research output: Contribution to journalArticleResearchpeer-review

107 Citations (Scopus)

Abstract

Background: The development of metabolic acidosis during cardiopulmonary bypass (CPB) is well recognized but poorly understood. The authors hypothesized that the delivery of pump prime fluids is primarily responsible for its development. Accordingly, acid-base changes induced by the establishment of CPB were studied using two types of priming fluid (Haemaccel, a polygeline solution, and Ringer's Injection vs. Plasmalyte 148) using quantitative biophysical methods. Methods: A prospective, double-blind, randomized trial was conducted at a tertiary institution with 22 patients undergoing CPB for coronary artery bypass surgery. Sampling of arterial blood was performed at three time intervals: before CPB (t1), 2 min after initiation of CPB at full flows (t2), and at the end of the case (t3). Measurements of Na+, K+, Mg2+, Cl-, HCO3-, phosphate, Ca2+, albumin, lactate, and arterial blood gases at each collection point were performed. Results were analyzed in a quantitative manner. Results: Immediately on delivery of pump prime fluids, all patients developed a metabolic acidosis (base excess: 0.95 mEq/1 (t1) to -3.65 mEq/1 (t2) (P < 0.001) for Haemaccel-Ringer's and 1.17 mEq/l (t1) to -3.20 mEq/l (t2). The decrease in base excess was the same for both primes (-4.60 vs. -4.37; not significant). However, the mechanism of metabolic acidosis was different. With the Haemaccel-Ringer's prime, the metabolic acidosis was hyperchloremic (Δ Cl-, +9.50 mEq/l; confidence interval, 7.00-11.50). With Plasmalyte 148, the acidosis was induced by an increase in unmeasured anions, most probably acetate and gluconate. The resolution of these two processes was different because the excretion of chloride was slower than that of the unmeasured anions (Δ base excess from t1 to t3 = -1.60 for Haemaccel-Ringer's vs. +1.15 for Plasmalyte 148; P = 0.0062). Conclusions: Cardiopulmonary bypass-induced metabolic acidosis appears to be iatrogenic in nature and derived from the effect of pump prime fluid on acid-base balance. The extent of such acidosis and its duration varies according to the type of pump prime.

Original languageEnglish
Pages (from-to)1170-1173
Number of pages4
JournalAnesthesiology
Volume93
Issue number5
DOIs
Publication statusPublished - 1 Jan 2000
Externally publishedYes

Keywords

  • Acid-base physiology
  • Anion gap
  • Hypoalbuminemia
  • Strong ion gap

Cite this