Role of inducible nitric oxide synthase in the regulation of leucocyte recruitment

Research output: Contribution to journalReview ArticleResearchpeer-review

73 Citations (Scopus)

Abstract

Constitutively produced nitric oxide released by endothelial cells has been shown to act as an endogenous agent which inhibits the rolling and adhesion of leucocytes in the microcirculation. However, during various types of inflammation, expression of the inducible form of nitric oxide synthase (iNOS) can dramatically increase the amount of nitric oxide present in tissues. Furthermore, as iNOS can be expressed by a wide variety of cell types, the distribution of nitric oxide is likely to be altered relative to that in unstimulated tissue. Under these conditions, it is less well understood whether iNOS-derived nitric oxide retains the anti-adhesive capabilities of constitutively produced nitric oxide. This review summarizes work done to examine this issue. Three main approaches have been used. In vitro studies have examined the role of iNOS in adhesive interactions between stimulated endothelial cells and leucocytes, providing evidence of an anti-adhesive effect of iNOS. In addition, the role of iNOS has been examined in vivo in animal models of inflammation using pharmacological iNOS inhibitors. These experiments were extended by the advent of the iNOS-deficient (iNOS-/-) mouse. Intravital microscopy studies of these mice have indicated that, under conditions of low-dose endotoxaemia, iNOS-derived nitric oxide can inhibit leucocyte rolling and adhesion. The potential mechanisms for these effects are discussed. In contrast, several other studies have observed either no effect or an enhancing effect of iNOS on inflammatory leucocyte recruitment. Taken together, these studies suggest that the importance of iNOS in modulating leucocyte recruitment can vary according to the type of inflammatory response.

Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalClinical Science
Volume100
Issue number1
DOIs
Publication statusPublished - 30 Jan 2001
Externally publishedYes

Keywords

  • Adhesion molecules
  • Inducible NO synthase
  • Inflammatory response
  • Leucocytes
  • Microvasculature

Cite this