TY - JOUR
T1 - Risk of pesticide pollution at the global scale
AU - Tang, Fiona H.M.
AU - Lenzen, Manfred
AU - McBratney, Alexander
AU - Maggi, Federico
N1 - Funding Information:
This work was supported by the University of Sydney through the SREI2020 EnviroSphere research programme. F.M. was also supported by the SOAR Fellowship awarded by the University of Sydney. We thank G. Porta for the discussion and advice on the uncertainty analysis. We acknowledge the Sydney Informatics Hub and the University of Sydney’s high-performance computing cluster Artemis for providing the high-performance computing resources that contributed to the results reported within this work. We acknowledge the use of the National Computational Infrastructure (NCI) which is supported by the Australian Government, and accessed through the Sydney Informatics Hub HPC Allocation Scheme supported by the Deputy Vice-Chancellor (Research), the University of Sydney and the ARC LIEF, 2019: Smith, Muller, Thornber et al., Sustaining and strengthening merit-based access to National Computational Infrastructure (LE190100021). We thank R. Hough and M. Liess for constructive comments on this manuscript.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2021/4
Y1 - 2021/4
N2 - Pesticides are widely used to protect food production and meet global food demand but are also ubiquitous environmental pollutants, causing adverse effects on water quality, biodiversity and human health. Here we use a global database of pesticide applications and a spatially explicit environmental model to estimate the world geography of environmental pollution risk caused by 92 active ingredients in 168 countries. We considered a region to be at risk of pollution if pesticide residues in the environment exceeded the no-effect concentrations, and to be at high risk if residues exceeded this by three orders of magnitude. We find that 64% of global agricultural land (approximately 24.5 million km2) is at risk of pesticide pollution by more than one active ingredient, and 31% is at high risk. Among the high-risk areas, about 34% are in high-biodiversity regions, 5% in water-scarce areas and 19% in low- and lower-middle-income nations. We identify watersheds in South Africa, China, India, Australia and Argentina as high-concern regions because they have high pesticide pollution risk, bear high biodiversity and suffer from water scarcity. Our study expands earlier pesticide risk assessments as it accounts for multiple active ingredients and integrates risks in different environmental compartments at a global scale.
AB - Pesticides are widely used to protect food production and meet global food demand but are also ubiquitous environmental pollutants, causing adverse effects on water quality, biodiversity and human health. Here we use a global database of pesticide applications and a spatially explicit environmental model to estimate the world geography of environmental pollution risk caused by 92 active ingredients in 168 countries. We considered a region to be at risk of pollution if pesticide residues in the environment exceeded the no-effect concentrations, and to be at high risk if residues exceeded this by three orders of magnitude. We find that 64% of global agricultural land (approximately 24.5 million km2) is at risk of pesticide pollution by more than one active ingredient, and 31% is at high risk. Among the high-risk areas, about 34% are in high-biodiversity regions, 5% in water-scarce areas and 19% in low- and lower-middle-income nations. We identify watersheds in South Africa, China, India, Australia and Argentina as high-concern regions because they have high pesticide pollution risk, bear high biodiversity and suffer from water scarcity. Our study expands earlier pesticide risk assessments as it accounts for multiple active ingredients and integrates risks in different environmental compartments at a global scale.
UR - http://www.scopus.com/inward/record.url?scp=85103416757&partnerID=8YFLogxK
U2 - 10.1038/s41561-021-00712-5
DO - 10.1038/s41561-021-00712-5
M3 - Article
AN - SCOPUS:85103416757
SN - 1752-0894
VL - 14
SP - 206
EP - 210
JO - Nature Geoscience
JF - Nature Geoscience
IS - 4
ER -