Reversal of functional changes in the brain associated with obstructive sleep apnoea following 6 months of CPAP

Rania H. Fatouleh, Linda C. Lundblad, Paul M. Macey, David K. McKenzie, Luke A. Henderson, Vaughan G. Macefield

Research output: Contribution to journalArticleResearchpeer-review

28 Citations (Scopus)


Abstract Obstructive sleep apnoea (OSA) is associated with an increase in the number of bursts of muscle sympathetic nerve activity (MSNA), leading to neurogenic hypertension. Continuous positive airway pressure (CPAP) is the most effective and widely used treatment for preventing collapse of the upper airway in OSA. In addition to improving sleep, CPAP decreases daytime MSNA towards control levels. It remains unknown how this restoration of MSNA occurs, in particular whether CPAP treatment results in a simple readjustment in activity of those brain regions responsible for the initial increase in MSNA or whether other brain regions are recruited to over-ride aberrant brain activity. By recording MSNA concurrently with functional Magnetic Resonance Imaging (fMRI), we aimed to assess brain activity associated with each individual subject's patterns of MSNA prior to and following 6 months of CPAP treatment. Spontaneous fluctuations in MSNA were recorded via tungsten microelectrodes inserted into the common peroneal nerve in 13 newly diagnosed patients with OSA before and after 6 months of treatment with CPAP and in 15 healthy control subjects while lying in a 3 T MRI scanner. Blood Oxygen Level Dependent (BOLD) contrast gradient echo, echo-planar images were continuously collected in a 4 s ON, 4 s OFF (200 volumes) sampling protocol. MSNA was significantly elevated in newly diagnosed OSA patients compared to control subjects (55 ± 4 vs 26 ± 2 bursts/min). Fluctuations in BOLD signal intensity in multiple regions covaried with the intensity of the concurrently recorded bursts of MSNA. There was a significant fall in MSNA after 6 months of CPAP (39 ± 2 bursts/min). The reduction in resting MSNA was coupled with significant falls in signal intensity in precuneus bilaterally, the left and right insula, right medial prefrontal cortex, right anterior cingulate cortex, right parahippocampus and the left and right retrosplenial cortices. These data support our contention that functional changes in these suprabulbar sites are, via projections to the brainstem, driving the augmented sympathetic outflow to the muscle vascular bed in untreated OSA.

Original languageEnglish
Article number443
Pages (from-to)799-806
Number of pages8
JournalNeuroImage: Clinical
Publication statusPublished - 21 Feb 2015
Externally publishedYes


  • Hypertension
  • Muscle sympathetic nerve activity
  • Obstructive sleep apnoea

Cite this