Revealing the Hox code in developing spinocerebellar neurons

Eamon Coughlan, Victoria Garside, Olivier Serralbo, Siew-Fen Lisa Wong, Huazheng Liang, Dominik Kraus, Kajari Karmakar, Filippo Rijli, James Bourne, Edwina McGlinn

Research output: Contribution to journalMeeting AbstractOther


Coordinated body movement requires integration of many sensory inputs. This includes proprioception, the sense of relative body position and force associated with movement. Proprioceptive information ofthe lower body/hind limb is relayed directly to the cerebellum via spinocerebellar (SC) neurons, located within four major neuronal columns or various scattered cell populations of the spinal cord. Despite their importance, a molecular understanding of these relay neurons is only beginning to be explored, with limited knowledge of molecular heterogeneity within and between columns. Here, we identify expression of Hox cluster genes, including both protein-coding genes and microRNAs, within SC neurons. Using neuronal tracing, in situ hybridisation and novel fluorescent reporter knock-in mice, we show that all posterior Hox genes of the 9-11 paralogs are expressed in SC neurons, revealing a "Hox code" based on axial level and individual SC column. Furthermore, we show that Hoxc9 function is required in most, but not all, cells of the major thoracic SC column, Clarke’s column, revealing heterogeneity reliant on Hox signatures.
Original languageEnglish
Pages (from-to)S122
Number of pages1
JournalMechanisms of Development
Issue numberS1
Publication statusPublished - Jul 2017

Cite this