Abstract
The chemical shift assignments and secondary structure of a murine-human chimera, MH35, of leukaemia inhibitory factor (LIF), a 180-residue protein of molecular mass 20 kDa, have been determined from multidimensional heteronuclear NMR spectra acquired on a uniformly 13C,15N-labelled sample. Secondary structure elements were defined on the basis of chemical shifts, NH-CαH coupling constants, medium-range NOEs and the location of slowly exchanging amide protons. The protein contains four α-helices, the relative orientations of which were determined on the basis of long-range, interhelical NOEs. The four helices are arranged in an up-up-down-down orientation, as found in other four-helical bundle cytokines. The overall topology of MH35-LIF is similar to that of the X-ray crystallographic structure for murine LIF [Robinson et al. (1994) Cell, 77, 1101-1116]. Differences between the X-ray structure and the solution structure are evident in the N-terminal tail, where the solution structure has a trans-Pro17 compared with the cis-Pro17 found in the crystal structure and the small antiparallel β-sheet encompassing residues in the N-terminus and CD loop in the crystal structure is less stable.
Original language | English |
---|---|
Pages (from-to) | 113-126 |
Number of pages | 14 |
Journal | Journal of Biomolecular NMR |
Volume | 9 |
Issue number | 2 |
Publication status | Published - 1997 |
Externally published | Yes |
Keywords
- Chemical shift assignments
- Cytokine
- Helices
- Heteronuclear NMR
- Isotope labelling
- Leukaemia inhibitory factor