Resistive electronic skin

Naveen N. Jason, My D. Ho, Wenlong Cheng

Research output: Contribution to journalReview ArticleResearchpeer-review

62 Citations (Scopus)

Abstract

Devices made from traditional conductive bulk materials using complex microfabrication methods often are restricted to being rigid and in some cases, flexible but not strethcable. The main reason is the mismatching mechanics between these traditional materials and the elastomeric materials they were bonded with, which causes materials delimination and/or cracks at soft/hard materials interfaces under strains. Conductive nanomaterials potentially offer new opportunity to tackle this challenge. Their availability in various sizes and shapes enables us to create composites with various dimensions, such as 1D conductive traces, 2D film, and 3D sponge-like architectures. These have opened the door for fabrication of stretchable interconnects, circuits, energy storage devices, antennas, LEDs, etc. The basis of using conductive nanomaterials composites in sensors is that any stimulus or change will generate a measurable electrical impulse. These impulses can be broadly classified as piezoelectric, triboelectric, capacitive, and resistive responses. Depending on the sensitivity required and the preference of electrical impulse to be measured, the device construction maybe tailored to give one of the four kinds of electrical responses. Resistive sensors in addition to being the easiest to construct are also the easiest to measure, which is the crucial reason for a large number of publications in this area. The working mechanism of resistive sensors based on the constituent conductive materials and their percolation network will be discussed in detail. Composition of conductive inks fabricated using wet chemistry methods, and nanomaterials using dry methods, their subsequent applications are covered as well. The exciting applications relating to human health and well-being will also be described. Finally a brief outlook of the future of wearable sensors as “invisibles” will be presented.
Original languageEnglish
Pages (from-to)5845-5866
Number of pages22
JournalJournal of Materials Chemistry C
Volume5
Issue number24
DOIs
Publication statusPublished - 28 Jun 2017

Cite this

Jason, Naveen N. ; Ho, My D. ; Cheng, Wenlong. / Resistive electronic skin. In: Journal of Materials Chemistry C. 2017 ; Vol. 5, No. 24. pp. 5845-5866.
@article{fd7d330d502f4b7697331822c7bb00c3,
title = "Resistive electronic skin",
abstract = "Devices made from traditional conductive bulk materials using complex microfabrication methods often are restricted to being rigid and in some cases, flexible but not strethcable. The main reason is the mismatching mechanics between these traditional materials and the elastomeric materials they were bonded with, which causes materials delimination and/or cracks at soft/hard materials interfaces under strains. Conductive nanomaterials potentially offer new opportunity to tackle this challenge. Their availability in various sizes and shapes enables us to create composites with various dimensions, such as 1D conductive traces, 2D film, and 3D sponge-like architectures. These have opened the door for fabrication of stretchable interconnects, circuits, energy storage devices, antennas, LEDs, etc. The basis of using conductive nanomaterials composites in sensors is that any stimulus or change will generate a measurable electrical impulse. These impulses can be broadly classified as piezoelectric, triboelectric, capacitive, and resistive responses. Depending on the sensitivity required and the preference of electrical impulse to be measured, the device construction maybe tailored to give one of the four kinds of electrical responses. Resistive sensors in addition to being the easiest to construct are also the easiest to measure, which is the crucial reason for a large number of publications in this area. The working mechanism of resistive sensors based on the constituent conductive materials and their percolation network will be discussed in detail. Composition of conductive inks fabricated using wet chemistry methods, and nanomaterials using dry methods, their subsequent applications are covered as well. The exciting applications relating to human health and well-being will also be described. Finally a brief outlook of the future of wearable sensors as “invisibles” will be presented.",
author = "Jason, {Naveen N.} and Ho, {My D.} and Wenlong Cheng",
year = "2017",
month = "6",
day = "28",
doi = "10.1039/C7TC01169E",
language = "English",
volume = "5",
pages = "5845--5866",
journal = "Journal of Materials Chemistry C",
issn = "2050-7526",
publisher = "The Royal Society of Chemistry",
number = "24",

}

Resistive electronic skin. / Jason, Naveen N.; Ho, My D.; Cheng, Wenlong.

In: Journal of Materials Chemistry C, Vol. 5, No. 24, 28.06.2017, p. 5845-5866.

Research output: Contribution to journalReview ArticleResearchpeer-review

TY - JOUR

T1 - Resistive electronic skin

AU - Jason, Naveen N.

AU - Ho, My D.

AU - Cheng, Wenlong

PY - 2017/6/28

Y1 - 2017/6/28

N2 - Devices made from traditional conductive bulk materials using complex microfabrication methods often are restricted to being rigid and in some cases, flexible but not strethcable. The main reason is the mismatching mechanics between these traditional materials and the elastomeric materials they were bonded with, which causes materials delimination and/or cracks at soft/hard materials interfaces under strains. Conductive nanomaterials potentially offer new opportunity to tackle this challenge. Their availability in various sizes and shapes enables us to create composites with various dimensions, such as 1D conductive traces, 2D film, and 3D sponge-like architectures. These have opened the door for fabrication of stretchable interconnects, circuits, energy storage devices, antennas, LEDs, etc. The basis of using conductive nanomaterials composites in sensors is that any stimulus or change will generate a measurable electrical impulse. These impulses can be broadly classified as piezoelectric, triboelectric, capacitive, and resistive responses. Depending on the sensitivity required and the preference of electrical impulse to be measured, the device construction maybe tailored to give one of the four kinds of electrical responses. Resistive sensors in addition to being the easiest to construct are also the easiest to measure, which is the crucial reason for a large number of publications in this area. The working mechanism of resistive sensors based on the constituent conductive materials and their percolation network will be discussed in detail. Composition of conductive inks fabricated using wet chemistry methods, and nanomaterials using dry methods, their subsequent applications are covered as well. The exciting applications relating to human health and well-being will also be described. Finally a brief outlook of the future of wearable sensors as “invisibles” will be presented.

AB - Devices made from traditional conductive bulk materials using complex microfabrication methods often are restricted to being rigid and in some cases, flexible but not strethcable. The main reason is the mismatching mechanics between these traditional materials and the elastomeric materials they were bonded with, which causes materials delimination and/or cracks at soft/hard materials interfaces under strains. Conductive nanomaterials potentially offer new opportunity to tackle this challenge. Their availability in various sizes and shapes enables us to create composites with various dimensions, such as 1D conductive traces, 2D film, and 3D sponge-like architectures. These have opened the door for fabrication of stretchable interconnects, circuits, energy storage devices, antennas, LEDs, etc. The basis of using conductive nanomaterials composites in sensors is that any stimulus or change will generate a measurable electrical impulse. These impulses can be broadly classified as piezoelectric, triboelectric, capacitive, and resistive responses. Depending on the sensitivity required and the preference of electrical impulse to be measured, the device construction maybe tailored to give one of the four kinds of electrical responses. Resistive sensors in addition to being the easiest to construct are also the easiest to measure, which is the crucial reason for a large number of publications in this area. The working mechanism of resistive sensors based on the constituent conductive materials and their percolation network will be discussed in detail. Composition of conductive inks fabricated using wet chemistry methods, and nanomaterials using dry methods, their subsequent applications are covered as well. The exciting applications relating to human health and well-being will also be described. Finally a brief outlook of the future of wearable sensors as “invisibles” will be presented.

UR - http://www.scopus.com/inward/record.url?scp=85021678401&partnerID=8YFLogxK

U2 - 10.1039/C7TC01169E

DO - 10.1039/C7TC01169E

M3 - Review Article

VL - 5

SP - 5845

EP - 5866

JO - Journal of Materials Chemistry C

JF - Journal of Materials Chemistry C

SN - 2050-7526

IS - 24

ER -