Renal medullary interstitial infusion is a flawed technique for examining vasodilator mechanisms in anesthetized rabbits

Aparna Kalyan, Gabriela Alejandra Eppel, Warwick Peter Anderson, Jeremy James Oliver, Roger George Evans

Research output: Contribution to journalArticleResearchpeer-review

11 Citations (Scopus)

Abstract

INTRODUCTION: In rats, medullary interstitial (IMI) infusion is a useful technique for selective delivery of pharmacological agents to the renal medulla, in both acute and chronic experimental settings. We examined the feasibility of using this technique for delivery of vasodilators in rabbits, since this larger species would provide a number of advantages, particularly in long-term studies of circulatory control. METHODS: Rabbits were anesthetized with pentobarbitone and artificially ventilated. Catheters were placed in a side branch of the renal artery and/or the renal medullary interstitium. Renal blood flow (RBF) was determined by transit-time ultrasound flowmetry, and blood flow in the cortex and medulla was estimated by laser Doppler flowmetry. RESULTS: Pilot studies showed that renal arterial (IRA) infusions of bradykinin (10-300 ng/kg/min) and adenosine (1-10 ng/kg/min) produced only transient renal vasodilatation. IRA infusions of methylamine hexamethylene methylamine (MAHMA) NONOate (100-1000 ng/kg/min) and acetylcholine (10-250 ng/kg/min) produced dose-dependent and sustained increases in RBF and reductions in arterial pressure at the highest doses. However, IMI infusion of the same doses did not consistently increase medullary laser Doppler flux (MLDF). After IRA MAHMA NONOate and IMI acetylcholine, RBF fell to below its resting level. IRA boluses of acetylcholine (10-1250 ng/kg), bradykinin (2-250 ng/kg), and MAHMA NONOate (100-3000 ng/kg) dose-dependently increased RBF and CLDF and MLDF. DISCUSSION: We had previously validated the IMI infusion technique for intramedullary delivery of vasoconstrictors in rabbits. Our present results indicate that this technique has limited application for delivery of vasodilator agents, in part because counterregulatory vasoconstrictor mechanisms are activated.
Original languageEnglish
Pages (from-to)153 - 159
Number of pages7
JournalJournal of Pharmacological and Toxicological Methods
Volume47
Issue number3
Publication statusPublished - 2002

Cite this

@article{e5d1656416b047ba8d06faab01a915a2,
title = "Renal medullary interstitial infusion is a flawed technique for examining vasodilator mechanisms in anesthetized rabbits",
abstract = "INTRODUCTION: In rats, medullary interstitial (IMI) infusion is a useful technique for selective delivery of pharmacological agents to the renal medulla, in both acute and chronic experimental settings. We examined the feasibility of using this technique for delivery of vasodilators in rabbits, since this larger species would provide a number of advantages, particularly in long-term studies of circulatory control. METHODS: Rabbits were anesthetized with pentobarbitone and artificially ventilated. Catheters were placed in a side branch of the renal artery and/or the renal medullary interstitium. Renal blood flow (RBF) was determined by transit-time ultrasound flowmetry, and blood flow in the cortex and medulla was estimated by laser Doppler flowmetry. RESULTS: Pilot studies showed that renal arterial (IRA) infusions of bradykinin (10-300 ng/kg/min) and adenosine (1-10 ng/kg/min) produced only transient renal vasodilatation. IRA infusions of methylamine hexamethylene methylamine (MAHMA) NONOate (100-1000 ng/kg/min) and acetylcholine (10-250 ng/kg/min) produced dose-dependent and sustained increases in RBF and reductions in arterial pressure at the highest doses. However, IMI infusion of the same doses did not consistently increase medullary laser Doppler flux (MLDF). After IRA MAHMA NONOate and IMI acetylcholine, RBF fell to below its resting level. IRA boluses of acetylcholine (10-1250 ng/kg), bradykinin (2-250 ng/kg), and MAHMA NONOate (100-3000 ng/kg) dose-dependently increased RBF and CLDF and MLDF. DISCUSSION: We had previously validated the IMI infusion technique for intramedullary delivery of vasoconstrictors in rabbits. Our present results indicate that this technique has limited application for delivery of vasodilator agents, in part because counterregulatory vasoconstrictor mechanisms are activated.",
author = "Aparna Kalyan and Eppel, {Gabriela Alejandra} and Anderson, {Warwick Peter} and Oliver, {Jeremy James} and Evans, {Roger George}",
year = "2002",
language = "English",
volume = "47",
pages = "153 -- 159",
journal = "Journal of Pharmacological and Toxicological Methods",
issn = "1056-8719",
publisher = "Elsevier",
number = "3",

}

Renal medullary interstitial infusion is a flawed technique for examining vasodilator mechanisms in anesthetized rabbits. / Kalyan, Aparna; Eppel, Gabriela Alejandra; Anderson, Warwick Peter; Oliver, Jeremy James; Evans, Roger George.

In: Journal of Pharmacological and Toxicological Methods, Vol. 47, No. 3, 2002, p. 153 - 159.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Renal medullary interstitial infusion is a flawed technique for examining vasodilator mechanisms in anesthetized rabbits

AU - Kalyan, Aparna

AU - Eppel, Gabriela Alejandra

AU - Anderson, Warwick Peter

AU - Oliver, Jeremy James

AU - Evans, Roger George

PY - 2002

Y1 - 2002

N2 - INTRODUCTION: In rats, medullary interstitial (IMI) infusion is a useful technique for selective delivery of pharmacological agents to the renal medulla, in both acute and chronic experimental settings. We examined the feasibility of using this technique for delivery of vasodilators in rabbits, since this larger species would provide a number of advantages, particularly in long-term studies of circulatory control. METHODS: Rabbits were anesthetized with pentobarbitone and artificially ventilated. Catheters were placed in a side branch of the renal artery and/or the renal medullary interstitium. Renal blood flow (RBF) was determined by transit-time ultrasound flowmetry, and blood flow in the cortex and medulla was estimated by laser Doppler flowmetry. RESULTS: Pilot studies showed that renal arterial (IRA) infusions of bradykinin (10-300 ng/kg/min) and adenosine (1-10 ng/kg/min) produced only transient renal vasodilatation. IRA infusions of methylamine hexamethylene methylamine (MAHMA) NONOate (100-1000 ng/kg/min) and acetylcholine (10-250 ng/kg/min) produced dose-dependent and sustained increases in RBF and reductions in arterial pressure at the highest doses. However, IMI infusion of the same doses did not consistently increase medullary laser Doppler flux (MLDF). After IRA MAHMA NONOate and IMI acetylcholine, RBF fell to below its resting level. IRA boluses of acetylcholine (10-1250 ng/kg), bradykinin (2-250 ng/kg), and MAHMA NONOate (100-3000 ng/kg) dose-dependently increased RBF and CLDF and MLDF. DISCUSSION: We had previously validated the IMI infusion technique for intramedullary delivery of vasoconstrictors in rabbits. Our present results indicate that this technique has limited application for delivery of vasodilator agents, in part because counterregulatory vasoconstrictor mechanisms are activated.

AB - INTRODUCTION: In rats, medullary interstitial (IMI) infusion is a useful technique for selective delivery of pharmacological agents to the renal medulla, in both acute and chronic experimental settings. We examined the feasibility of using this technique for delivery of vasodilators in rabbits, since this larger species would provide a number of advantages, particularly in long-term studies of circulatory control. METHODS: Rabbits were anesthetized with pentobarbitone and artificially ventilated. Catheters were placed in a side branch of the renal artery and/or the renal medullary interstitium. Renal blood flow (RBF) was determined by transit-time ultrasound flowmetry, and blood flow in the cortex and medulla was estimated by laser Doppler flowmetry. RESULTS: Pilot studies showed that renal arterial (IRA) infusions of bradykinin (10-300 ng/kg/min) and adenosine (1-10 ng/kg/min) produced only transient renal vasodilatation. IRA infusions of methylamine hexamethylene methylamine (MAHMA) NONOate (100-1000 ng/kg/min) and acetylcholine (10-250 ng/kg/min) produced dose-dependent and sustained increases in RBF and reductions in arterial pressure at the highest doses. However, IMI infusion of the same doses did not consistently increase medullary laser Doppler flux (MLDF). After IRA MAHMA NONOate and IMI acetylcholine, RBF fell to below its resting level. IRA boluses of acetylcholine (10-1250 ng/kg), bradykinin (2-250 ng/kg), and MAHMA NONOate (100-3000 ng/kg) dose-dependently increased RBF and CLDF and MLDF. DISCUSSION: We had previously validated the IMI infusion technique for intramedullary delivery of vasoconstrictors in rabbits. Our present results indicate that this technique has limited application for delivery of vasodilator agents, in part because counterregulatory vasoconstrictor mechanisms are activated.

UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12628306

M3 - Article

VL - 47

SP - 153

EP - 159

JO - Journal of Pharmacological and Toxicological Methods

JF - Journal of Pharmacological and Toxicological Methods

SN - 1056-8719

IS - 3

ER -