TY - JOUR
T1 - Relaxin family peptide receptor-1 protects against airway fibrosis during homeostasis but not against fibrosis associated with chronic allergic airways disease
AU - Samuel, Chrishan
AU - Royce, Simon
AU - Cheng, Bin
AU - Cao, Huifang
AU - Gossen, Jan
AU - Tregear, Geoffrey
AU - Tang, Mimi
PY - 2009
Y1 - 2009
N2 - Endogenous relaxin has recently been demonstrated to protect the airway/lung against age-related fibrosis and against inflammation-associated airway fibrosis in animal models of allergic airways disease (AAD). In the current study, we examined the contribution of the primary relaxin receptor, relaxin family peptide receptor-1 (RXFP1), in mediating these effects of relaxin. Lung tissues from healthy aging RXFP1 gene-knockout (Rxfp1(-/-)) and wild-type (Rxfp1(+/+)) mice and from 8- to 10-wk-old Rxfp1(-/-) and Rxfp1(+/+) mice subjected to a mouse model of AAD were assessed for various markers of airway fibrosis and remodeling. Male and female Rxfp1(-/-) mice demonstrated an age-related progression of airway/lung fibrosis. Saline-treated Rxfp1(-/-) mice had significantly increased myofibroblast differentiation and lung collagen deposition (both P <0.05), decreased matrix metalloproteinase (MMP)-9 expression and activity (P <0.05), but equivalent levels of MMP-2 and tissue inhibitor of metalloproteinases (TIMPs) to that measured in saline-treated Rxfp1(+/+) mice. As expected, ovalbumin (OVA)-treated Rxfp1(+/+) mice developed markedly increased lung myofibroblast differentiation and collagen deposition (both P <0.01 vs saline-treated Rxfp1(+/+) mice), significantly decreased lung MMP-2 and MMP-9 expression and activity and increased TIMP-1 expression (all P <0.05 vs. respective measurements from saline-treated Rxfp1(+/+) mice). Surprisingly, however, OVA-treated Rxfp1(-/-) animals had equivalent levels of airway fibrosis and gelatinase activity but increased TIMP-1 expression (P <0.05) compared with OVA-treated Rxfp1(+/+) mice. These combined findings demonstrate that RXFP1 is involved in mediating relaxin s effects on airway fibrosis during homeostasis but not during inflammation-induced fibrosis associated with chronic AAD.
AB - Endogenous relaxin has recently been demonstrated to protect the airway/lung against age-related fibrosis and against inflammation-associated airway fibrosis in animal models of allergic airways disease (AAD). In the current study, we examined the contribution of the primary relaxin receptor, relaxin family peptide receptor-1 (RXFP1), in mediating these effects of relaxin. Lung tissues from healthy aging RXFP1 gene-knockout (Rxfp1(-/-)) and wild-type (Rxfp1(+/+)) mice and from 8- to 10-wk-old Rxfp1(-/-) and Rxfp1(+/+) mice subjected to a mouse model of AAD were assessed for various markers of airway fibrosis and remodeling. Male and female Rxfp1(-/-) mice demonstrated an age-related progression of airway/lung fibrosis. Saline-treated Rxfp1(-/-) mice had significantly increased myofibroblast differentiation and lung collagen deposition (both P <0.05), decreased matrix metalloproteinase (MMP)-9 expression and activity (P <0.05), but equivalent levels of MMP-2 and tissue inhibitor of metalloproteinases (TIMPs) to that measured in saline-treated Rxfp1(+/+) mice. As expected, ovalbumin (OVA)-treated Rxfp1(+/+) mice developed markedly increased lung myofibroblast differentiation and collagen deposition (both P <0.01 vs saline-treated Rxfp1(+/+) mice), significantly decreased lung MMP-2 and MMP-9 expression and activity and increased TIMP-1 expression (all P <0.05 vs. respective measurements from saline-treated Rxfp1(+/+) mice). Surprisingly, however, OVA-treated Rxfp1(-/-) animals had equivalent levels of airway fibrosis and gelatinase activity but increased TIMP-1 expression (P <0.05) compared with OVA-treated Rxfp1(+/+) mice. These combined findings demonstrate that RXFP1 is involved in mediating relaxin s effects on airway fibrosis during homeostasis but not during inflammation-induced fibrosis associated with chronic AAD.
UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18974264
U2 - 10.1210/en.2008-1062
DO - 10.1210/en.2008-1062
M3 - Article
SN - 0013-7227
VL - 150
SP - 1495
EP - 1502
JO - Endocrinology
JF - Endocrinology
IS - 3
ER -