Relating the radar bright band and its strength to surface rainfall rate using an automated approach

Dongqi Lin, Ben Pickering, Ryan R. Neely

Research output: Contribution to journalArticleResearchpeer-review

8 Citations (Scopus)


In radar observations of hydrometeors, the 0°C isotherm in the atmosphere (i.e., the freezing level) usually appears as a region of enhanced reflectivity. This region is known as the bright band (BB). In this study, observations over 12 months from a vertically pointing 35-GHz radar and a collocated disdrometer at the Natural Environment Research Council (NERC) Facility for Atmospheric and Radio Research (NFARR) are used to identify and compare microphysical differences between BB and non-brightband (NBB) periods. From these observations, the relationship between radar reflectivity Z and rainfall intensity R is found to be Z = 772R0.57 for BB periods and Z = 108R0.99 for NBB periods. Additionally, the brightband strength (BBS) was calculated using a novel method derived from the Michelson contrast equation in an attempt to explain the observed variability in BB precipitation. A series of Z–R relationships are computed with respect to BBS. The coefficients increase with increasing BBS from 227 to 926, while the exponents decrease with increasing BBS from 0.85 to 0.38. The results also indicate that NBB periods identified in the presence of a 0°C isotherm in other studies may be misclassified due to their inability to identify weak brightband periods. As such, it is hypothesized that NBB periods are solely due to warm rain processes.

Original languageEnglish
Pages (from-to)335-353
Number of pages19
JournalJournal of Hydrometeorology
Issue number2
Publication statusPublished - Feb 2020
Externally publishedYes

Cite this