Regulation of oscillation dynamics in biochemical systems with dual negative feedback loops

Research output: Contribution to journalArticleResearchpeer-review

26 Citations (Scopus)

Abstract

Feedback controls are central to cellular regulation. Negative-feedback mechanisms are well known to underline oscillatory dynamics. However, the presence of multiple negative-feedback mechanisms is common in oscillatory cellular systems, raising intriguing questions of how they cooperate to regulate oscillations. In this work, we studied the dynamical properties of a set of general biochemical motifs with dual, nested negative-feedback structures. We showed analytically and then confirmed numerically that, in these motifs, each negative-feedback loop exhibits distinctly different oscillation-controlling functions. The longer, outer feedback loop was found to promote oscillations, whereas the short, inner loop suppresses and can even eliminate oscillations. We found that the position of the inner loop within the coupled motifs affects its repression strength towards oscillatory dynamics. Bifurcation analysis indicated that emergence of oscillations may be a strict parametric requirement and thus evolutionarily tricky. Investigation of the quantitative features of oscillations (i.e. frequency, amplitude and mean value) revealed that coupling negative feedback provides robust tuning of the oscillation dynamics. Finally, we demonstrated that the mitogen-activated protein kinase (MAPK) cascades also display properties seen in the general nested feedback motifs. The findings and implications in this study provide novel understanding of biochemical negative-feedback regulation in a mixed wiring context.
Original languageEnglish
Pages (from-to)1998 - 2010
Number of pages13
JournalJournal of the Royal Society Interface
Volume9
Issue number73
DOIs
Publication statusPublished - 2012
Externally publishedYes

Cite this