Abstract
Introduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Methods: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the likelihood of mutation status by histopathological markers were derived using a Mantel-Haenszel approach. Results: ER-positive phenotype negatively predicted BRCA1 mutation status, irrespective of grade (LRs from 0.08 to 0.90). ER-negative grade 3 histopathology was more predictive of positive BRCA1 mutation status in women 50 years or older (LR = 4.13 (3.70 to 4.62)) versus younger than 50 years (LR = 3.16 (2.96 to 3.37)). For BRCA2, ER-positive grade 3 phenotype modestly predicted positive mutation status irrespective of age (LR = 1.7-fold), whereas ER-negative grade 3 features modestly predicted positive mutation status at 50 years or older (LR = 1.54 (1.27 to 1.88)). Triple-negative tumor status was highly predictive of BRCA1 mutation status for women younger than 50 years (LR = 3.73 (3.43 to 4.05)) and 50 years or older (LR = 4.41 (3.86 to 5.04)), and modestly predictive of positive BRCA2 mutation status in women 50 years or older (LR = 1.79 (1.42 to 2.24)). Conclusions: These results refine likelihood-ratio estimates for predicting BRCA1 and BRCA2 mutation status by using commonly measured histopathological features. Age at diagnosis is an important variable for most analyses, and grade is more informative than ER status for BRCA2 mutation carrier prediction. The estimates will improve BRCA1 and BRCA2 variant classification and inform patient mutation testing and clinical management.
Original language | English |
---|---|
Article number | 3419 |
Number of pages | 16 |
Journal | Breast Cancer Research |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - 23 Dec 2014 |
Externally published | Yes |
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Breast Cancer Research, Vol. 16, No. 1, 3419, 23.12.2014.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Refined histopathological predictors of BRCA1 and BRCA2 mutation status
T2 - a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia
AU - Spurdle, Amanda B
AU - Couch, Fergus J
AU - Parsons, Michael T.
AU - McGuffog, Lesley
AU - Barrowdale, Daniel
AU - Bolla, Manjeet K.
AU - Wang, Qin
AU - Healey, Sue
AU - Schmutzler, Rita Katharina
AU - Wappenschmidt, Barbara
AU - Rhiem, Kerstin
AU - Hahnen, Eric T
AU - Engel, Christoph
AU - Meindl, Alfons
AU - Ditsch, Nina
AU - Arnold, Norbert
AU - Plendl, Hansjoerg
AU - Niederacher, Dieter
AU - Sutter, Christian
AU - Wang-Gohrke, Shan
AU - Steinemann, Doris
AU - Preisler-Adams, Sabine
AU - Kast, Karin
AU - Varon-Mateeva, Raymonda
AU - Ellis, Steve
AU - Frost, Debra
AU - Platte, Radka
AU - Perkins, Jo
AU - Gareth Evans, D.
AU - Izatt, Louise
AU - Eeles, Ros
AU - Adlard, Julian
AU - Davidson, Rosemarie
AU - Cole, Trevor
AU - Scuvera, Giulietta
AU - Manoukian, Siranoush
AU - Bonanni, Bernardo
AU - Mariette, Frederique
AU - Fortuzzi, Stefano
AU - Viel, Alessandra
AU - Pasini, Barbara J.
AU - Papi, Laura
AU - Varesco, Liliana
AU - Balleine, Rosemary
AU - Nathanson, Katherine L
AU - Domchek, Susan M.
AU - Offitt, Kenneth
AU - Jakubowska, Anna
AU - Lindor, Noralane M
AU - Thomassen, Mads
AU - Jensen, Uffe Birk
AU - Rantala, Johanna
AU - Borg, Åke
AU - Andrulis, Irene L
AU - Miron, Alexander
AU - Hansen, Thomas V.O.
AU - Caldes, Trinidad
AU - Neuhausen, Susan L
AU - Toland, Amanda E.
AU - Nevanlinna, Heli
AU - Montagna, Marco
AU - Garber, Judy
AU - Godwin, Andrew K.
AU - Osorio, Ana
AU - Factor, Rachel E.
AU - Terry, Mary Beth
AU - Rebbeck, Timothy R.
AU - Karlan, Beth Y.
AU - Southey, Melissa
AU - Rashid, Muhammad Usman
AU - Tung, Nadine
AU - Pharoah, Paul D P
AU - Blows, Fiona M
AU - Dunning, Alison M
AU - Provenzano, Elena
AU - Hall, Per
AU - Czene, Kamila
AU - Schmidt, Marjanka K.
AU - Broeks, Annegien
AU - Cornelissen, Sten
AU - Verhoef, Senno
AU - Fasching, Peter A.
AU - Beckmann, Matthias W.
AU - Ekici, Arif B
AU - Slamon, Dennis J
AU - Bojesen, Stig E
AU - Nordestgaard, Børge G.
AU - Nielsen, Sune F
AU - Flyger, Henrik
AU - Chang-Claude, Jenny
AU - Flesch-Janys, Dieter
AU - Rudolph, Anja
AU - Seibold, Petra
AU - Aittomäki, Kristiina
AU - Muranen, Taru A.
AU - Carl Blomqvist, Päivi Heikkilä
AU - Figueroa, Jonine D
AU - Chanock, Stephen J
AU - Brinton, Louise
AU - Lissowska, Jolanta
AU - Olson, Janet E
AU - Pankratz, Vernon S.
AU - John, Esther M.
AU - Whittemore, Alice S
AU - West, Dee W.
AU - Hamann, Ute
AU - Torres, Diana
AU - Ulmer, Hans Ulrich
AU - Rüdiger, Thomas
AU - Devilee, Peter
AU - Tollenaar, Robert A.E.M.
AU - Seynaeve, Caroline
AU - Van Asperen, Christi J.
AU - Eccles, Diana M
AU - Tapper, William J
AU - Durcan, Lorraine
AU - Jones, Robyn Louise
AU - Peto, Julian
AU - dos-Santos-Silva, Isabel
AU - Fletcher, Olivia
AU - Johnson, Nichola
AU - Dwek, Miriam
AU - Swann, Ruth
AU - Bane, Anita L.
AU - Glendon, Gord
AU - Mulligan, Anna Marie
AU - Giles, Graham G.
AU - Milne, Roger L
AU - Baglietto, Laura
AU - McLean, Catriona
AU - Carpenter, Jane
AU - Clarke, Christine
AU - Scott, Rodney
AU - Brauch, Hiltrud
AU - Brüning, Thomas
AU - Ko, Yon-Dschun
AU - Cross, Simon S.
AU - Reed, Malcolm W R
AU - Lubinski, Jan
AU - Jaworska-Bieniek, Katarzyna
AU - Durda, Katarzyna
AU - Gronwald, Jacek
AU - Dörk, Thilo
AU - Bogdanova, Natalia
AU - Park-Simon, Tjoung-Won
AU - Hillemanns, Peter
AU - Haiman, Christopher A
AU - Henderson, Brian E
AU - Schumacher, Fredrick
AU - Marchand, Loic Le
AU - Burwinkel, Barbara
AU - Marme, Frederik
AU - Surovy, Harald
AU - Yang, Rongxi
AU - Anton-Culver, Hoda
AU - Ziogas, Argyrios
AU - Hooning, Maartje J
AU - Collée, J. Margriet
AU - Martens, John W M
AU - Tilanus-Linthorst, Madeleine M A
AU - Brenner, Hermann
AU - Dieffenbach, Aida Karina
AU - Arndt, Volke
AU - Stegmaier, Christa
AU - Winqvist, Robert
AU - Pylkäs, Katri
AU - Jukkola-Vuorinen, Arja
AU - Grip, Mervi
AU - Lindblom, Annika
AU - Margolin, Sara
AU - Joseph, Vijai
AU - Robson, Mark E
AU - Rau-Murthy, Rohini
AU - González-Neira, Anna
AU - Arias, José Ignacio
AU - Zamora, Pilar
AU - Benítez, Javier
AU - Mannermaa, Arto
AU - Kataja, Vesa
AU - Kosma, Veli-Matti
AU - Hartikainen, Jaana M.
AU - Peterlongo, Paolo
AU - Zaffaroni, Daniela
AU - Barile, Monica
AU - Capra, Fabio
AU - Radice, Paolo
AU - Teo, Soo-Hwang
AU - Easton, Douglas F
AU - Antoniou, Antonis C
AU - Chenevix-Trench, Georgia
AU - Goldgar, David E.
AU - on behalf of ABCTB Investigators, EMBRACE Group, GENICA Network, HEBON Group and kConFab Investigators
PY - 2014/12/23
Y1 - 2014/12/23
N2 - Introduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Methods: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the likelihood of mutation status by histopathological markers were derived using a Mantel-Haenszel approach. Results: ER-positive phenotype negatively predicted BRCA1 mutation status, irrespective of grade (LRs from 0.08 to 0.90). ER-negative grade 3 histopathology was more predictive of positive BRCA1 mutation status in women 50 years or older (LR = 4.13 (3.70 to 4.62)) versus younger than 50 years (LR = 3.16 (2.96 to 3.37)). For BRCA2, ER-positive grade 3 phenotype modestly predicted positive mutation status irrespective of age (LR = 1.7-fold), whereas ER-negative grade 3 features modestly predicted positive mutation status at 50 years or older (LR = 1.54 (1.27 to 1.88)). Triple-negative tumor status was highly predictive of BRCA1 mutation status for women younger than 50 years (LR = 3.73 (3.43 to 4.05)) and 50 years or older (LR = 4.41 (3.86 to 5.04)), and modestly predictive of positive BRCA2 mutation status in women 50 years or older (LR = 1.79 (1.42 to 2.24)). Conclusions: These results refine likelihood-ratio estimates for predicting BRCA1 and BRCA2 mutation status by using commonly measured histopathological features. Age at diagnosis is an important variable for most analyses, and grade is more informative than ER status for BRCA2 mutation carrier prediction. The estimates will improve BRCA1 and BRCA2 variant classification and inform patient mutation testing and clinical management.
AB - Introduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Methods: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the likelihood of mutation status by histopathological markers were derived using a Mantel-Haenszel approach. Results: ER-positive phenotype negatively predicted BRCA1 mutation status, irrespective of grade (LRs from 0.08 to 0.90). ER-negative grade 3 histopathology was more predictive of positive BRCA1 mutation status in women 50 years or older (LR = 4.13 (3.70 to 4.62)) versus younger than 50 years (LR = 3.16 (2.96 to 3.37)). For BRCA2, ER-positive grade 3 phenotype modestly predicted positive mutation status irrespective of age (LR = 1.7-fold), whereas ER-negative grade 3 features modestly predicted positive mutation status at 50 years or older (LR = 1.54 (1.27 to 1.88)). Triple-negative tumor status was highly predictive of BRCA1 mutation status for women younger than 50 years (LR = 3.73 (3.43 to 4.05)) and 50 years or older (LR = 4.41 (3.86 to 5.04)), and modestly predictive of positive BRCA2 mutation status in women 50 years or older (LR = 1.79 (1.42 to 2.24)). Conclusions: These results refine likelihood-ratio estimates for predicting BRCA1 and BRCA2 mutation status by using commonly measured histopathological features. Age at diagnosis is an important variable for most analyses, and grade is more informative than ER status for BRCA2 mutation carrier prediction. The estimates will improve BRCA1 and BRCA2 variant classification and inform patient mutation testing and clinical management.
UR - http://www.scopus.com/inward/record.url?scp=84928752028&partnerID=8YFLogxK
U2 - 10.1186/s13058-014-0474-y
DO - 10.1186/s13058-014-0474-y
M3 - Article
C2 - 25857409
SN - 1465-542X
VL - 16
JO - Breast Cancer Research
JF - Breast Cancer Research
IS - 1
M1 - 3419
ER -