Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease

Kristen J. Bubb, Asa Birna Birgisdottir, Owen Tang, Thomas Hansen, Gemma A. Figtree

Research output: Contribution to journalReview ArticleResearchpeer-review

23 Citations (Scopus)


Rapid and coordinated release of a variety of reactive oxygen species (ROS) such as superoxide (O2.-), hydrogen peroxide (H2O2) and peroxynitrite, in specific microdomains, play a crucial role in cell signalling in the cardiovascular system. These reactions are mediated by reversible and functional modifications of a wide variety of key proteins. Dysregulation of this oxidative signalling occurs in almost all forms of cardiovascular disease (CVD), including at the very early phases. Despite the heavily publicized failure of “antioxidants” to improve CVD progression, pharmacotherapies such as those targeting the renin-angiotensin system, or statins, exert at least part of their large clinical benefit via modulating cellular redox signalling. Over 250 proteins, including receptors, ion channels and pumps, and signalling proteins are found in the caveolae. An increasing proportion of these are being recognized as redox regulated-proteins, that reside in the immediate vicinity of the two major cellular sources of ROS, nicotinamide adenine dinucleotide phosphate oxidase (Nox) and uncoupled endothelial nitric oxide synthase (eNOS). This review focuses on what is known about redox signalling within the caveolae, as well as endogenous protective mechanisms utilized by the cell, and new approaches to targeting dysregulated redox signalling in the caveolae as a therapeutic strategy in CVD.

Original languageEnglish
Pages (from-to)61-74
Number of pages14
JournalFree Radical Biology and Medicine
Publication statusPublished - Aug 2017
Externally publishedYes


  • eNOS
  • Glutaredoxin
  • Heart failure
  • Hydrogen peroxide
  • NADPH oxidase
  • S-glutathionylation
  • Superoxide

Cite this