Projects per year
Abstract
In situ sensors that collect high-frequency data are used increasingly to monitor aquatic environments. These sensors are prone to technical errors, resulting in unrecorded observations and/or anomalous values that are subsequently removed and create gaps in time series data. We present a framework based on generalized additive and auto-regressive models to recover these missing data. To mimic sporadically missing (i) single observations and (ii) periods of contiguous observations, we randomly removed (i) point data and (ii) day-and week-long sequences of data from a two-year time series of nitrate concentration data collected from Arikaree River, USA, where synoptically collected water temperature, turbidity, conductance, elevation, and dissolved oxygen data were available. In 72% of cases with missing point data, predicted values were within the sensor precision interval of the original value, although predictive ability declined when sequences of missing data occurred. Precision also depended on the availability of other water quality covariates. When covariates were available, even a sudden, event-based peak in nitrate concentration was reconstructed well. By providing a promising method for accurate prediction of missing data, the utility and confidence in summary statistics and statistical trends will increase, thereby assisting the effective monitoring and management of fresh waters and other at-risk ecosystems.
Original language | English |
---|---|
Article number | 12803 |
Number of pages | 14 |
Journal | International Journal of Environmental Research and Public Health |
Volume | 18 |
Issue number | 23 |
DOIs | |
Publication status | Published - Dec 2021 |
Keywords
- Anomaly correction
- Generalised additive model (GAM)
- Missing data reconstruction
- Remote sensing
- Water quality
Projects
- 2 Finished
-
Revolutionising water-quality monitoring in the information age
Mengersen, K. L., Hyndman, R., Peterson, E., McGree, J. M., Leigh, C., Turner, R., Liquet, B., Jones, J. & Muriuki, G.
1/08/19 → 31/07/22
Project: Research
-
ARC Centre of Excellence for Mathematical and Statistical Frontiers of Big Data, Big Models, New Insights
Hall, P., Bartlett, P., Bean, N., Burrage, K., DeGier, J., Delaigle, A., Forrester, P., Geweke, J., Kohn, R., Kroese, D., Mengersen, K. L., Pettit, A., Pollett, P., Roughan, M., Ryan, L., Taylor, P., Turner, I., Wand, M., Garoni, T., Smith-Miles, K. A., Caley, M., Churches, T., Elazar, D., Gupta, A., Harch, B., Tam, S., Weegberg, K., Willinger, W. & Hyndman, R.
Australian Research Council (ARC), Monash University – Internal Department Contribution, University of Melbourne, Queensland University of Technology , University of Adelaide, University of New South Wales (UNSW), University of Queensland , University of Technology Sydney, Monash University – Internal University Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal School Contribution, Roads Corporation (trading as VicRoads) (Victoria)
1/01/17 → 31/12/21
Project: Research