Projects per year
Abstract
The interaction between natural killer (NK) cell inhibitory receptors and their cognate ligands constitutes a key mechanism by which healthy tissues are protected from NK cell-mediated lysis. However, self-ligand recognition remains poorly understood within the prototypical NKR-P1 receptor family. Here we report the structure of the inhibitory NKR-P1B receptor bound to its cognate host ligand, Clr-b. NKR-P1B and Clr-b interact via a head-to-head docking mode through an interface that includes a large array of polar interactions. NKR-P1B:Clr-b recognition is extremely sensitive to mutations at the heterodimeric interface, with most mutations severely impacting both Clr-b binding and NKR-P1B receptor function to implicate a low affinity interaction. Within the structure, two NKR-P1B:Clr-b complexes are cross-linked by a non-classic NKR-P1B homodimer, and the disruption of homodimer formation abrogates Clr-b recognition. These data provide an insight into a fundamental missing-self recognition system and suggest an avidity-based mechanism underpins NKR-P1B receptor function.
Original language | English |
---|---|
Article number | 4623 |
Number of pages | 12 |
Journal | Nature Communications |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 5 Nov 2018 |
Keywords
- autoimmunity
- innate lymphoid cells
- signal transduction
- x-ray crystallography
Projects
- 1 Finished
-
ARC Centre of Excellence in Advanced Molecular Imaging
Whisstock, J. (Primary Chief Investigator (PCI)), Abbey, B. (Chief Investigator (CI)), Nugent, K. A. (Chief Investigator (CI)), Quiney, H. M. (Chief Investigator (CI)), Godfrey, D. I. (Chief Investigator (CI)), Heath, W. (Chief Investigator (CI)), Fairlie, D. P. (Chief Investigator (CI)), Chapman, H. (Partner Investigator (PI)), Peele, A. (Partner Investigator (PI)), Davey, J. (Partner Investigator (PI)) & Wittmann, A. (Project Manager)
30/06/14 → 31/03/21
Project: Research