Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes

Aino Soro-Paavonen, Anna M.D. Watson, Jiaze Li, Karri Paavonen, Audrey Koitka, Anna C. Calkin, David Barit, Melinda T. Coughlan, Brian G. Drew, Graeme I. Lancaster, Merlin Thomas, Josephine M. Forbes, Peter P. Nawroth, Angelika Bierhaus, Mark E. Cooper, Karin A. Jandeleit-Dahm

Research output: Contribution to journalArticleResearchpeer-review

365 Citations (Scopus)


OBJECTIVE-Activation of the receptor for advanced glycation end products (RAGE) in diabetic vasculature is considered to be a key mediator of atherogenesis. This study examines the effects of deletion of RAGE on the development of atherosclerosis in the diabetic apoE-/- model of accelerated atherosclerosis. RESEARCH DESIGN AND METHODS-ApoE-/- and RAGE-/-/ apoE-/- double knockout mice were rendered diabetic with streptozotocin and followed for 20 weeks, at which time plaque accumulation was assessed by en face analysis. RESULTS-Although diabetic apoE-/- mice showed increased plaque accumulation (14.9 ± 1.7%), diabetic RAGE-/-/apoE-/- mice had significantly reduced atherosclerotic plaque area (4.9 ± 0.4%) to levels not significantly different from control apoE-/- mice (4.3 ± 0.4%). These beneficial effects on the vasculature were associated with attenuation of leukocyte recruitment; decreased expression of proinflammatory mediators, including the nuclear factor-κB subunit p65, VCAM-1, and MCP-1; and reduced oxidative stress, as reflected by staining for nitrotyrosine and reduced expression of various NADPH oxidase subunits, gp91phox, p47phox, and rac-1. Both RAGE and RAGE ligands, including S100A8/A9, high mobility group box 1 (HMGB1), and the advanced glycation end product (AGE) carboxymethyllysine were increased in plaques from diabetic apoE-/- mice. Furthermore, the accumulation of AGEs and other ligands to RAGE was reduced in diabetic RAGE -/-/apoE-/- mice. CONCLUSIONS-This study provides evidence for RAGE playing a central role in the development of accelerated atherosclerosis associated with diabetes. These findings emphasize the potential utility of strategies targeting RAGE activation in the prevention and treatment of diabetic macrovascular complications.

Original languageEnglish
Pages (from-to)2461-2469
Number of pages9
Issue number9
Publication statusPublished - 1 Sept 2008
Externally publishedYes

Cite this