TY - JOUR
T1 - Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications
AU - Phang, Sue Jiun
AU - Tan, Lling Lling
N1 - Funding Information:
This work was funded by the Ministry of Higher Education (MOHE) Malaysia under the Fundamental-Research Grant Scheme (FRGS) (Ref no: FRGS/1/2018/TK02/HWUM/03/2).
Publisher Copyright:
© 2019 The Royal Society of Chemistry.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/11/7
Y1 - 2019/11/7
N2 - CQDs are a new class of carbon material with ultrafine sizes and readily tunable optical properties, which make them extremely intriguing. CQDs have gained widespread attention due to their potential and versatility, and they can be applied in many different fields. One of their many applications is photocatalysis, which has garnered incessant research interest in recent years. State-of-the-art technology utilizes sustainable solar energy, which is both clean and virtually inexhaustible. To date, the photocatalytic performance of CQDs in their raw form is still far from ideal. Nevertheless, they can be substantially enhanced through several modification techniques. In this review, strategies to improve the photocatalytic performance of CQDs, such as size-tuning, surface passivation and functionalization, and elemental doping, are extensively discussed. The review also covers the latest advances in the use of CQDs in photocatalysis to address both environmental and energy-related issues. Particular emphasis is placed on the formation of 0D/2D heterojunction nanocomposites with several 2D materials, such as graphene, graphitic carbon nitride, metal oxides and metallates, metal oxyhalides, transition metal oxides and chalcogenides. The hybridization routes to binary nanocomposites, and their photocatalytic application to carbon dioxide reduction, hydrogen production, and dye and pollutant degradation, are thoroughly reviewed in this paper.
AB - CQDs are a new class of carbon material with ultrafine sizes and readily tunable optical properties, which make them extremely intriguing. CQDs have gained widespread attention due to their potential and versatility, and they can be applied in many different fields. One of their many applications is photocatalysis, which has garnered incessant research interest in recent years. State-of-the-art technology utilizes sustainable solar energy, which is both clean and virtually inexhaustible. To date, the photocatalytic performance of CQDs in their raw form is still far from ideal. Nevertheless, they can be substantially enhanced through several modification techniques. In this review, strategies to improve the photocatalytic performance of CQDs, such as size-tuning, surface passivation and functionalization, and elemental doping, are extensively discussed. The review also covers the latest advances in the use of CQDs in photocatalysis to address both environmental and energy-related issues. Particular emphasis is placed on the formation of 0D/2D heterojunction nanocomposites with several 2D materials, such as graphene, graphitic carbon nitride, metal oxides and metallates, metal oxyhalides, transition metal oxides and chalcogenides. The hybridization routes to binary nanocomposites, and their photocatalytic application to carbon dioxide reduction, hydrogen production, and dye and pollutant degradation, are thoroughly reviewed in this paper.
UR - http://www.scopus.com/inward/record.url?scp=85074342156&partnerID=8YFLogxK
U2 - 10.1039/c9cy01452g
DO - 10.1039/c9cy01452g
M3 - Review Article
AN - SCOPUS:85074342156
SN - 2044-4753
VL - 9
SP - 5882
EP - 5905
JO - Catalysis Science & Technology
JF - Catalysis Science & Technology
IS - 21
ER -