TY - JOUR
T1 - Realistic aortic phantom to study hemodynamics using MRI and cardiac catheterization in normal and aortic coarctation conditions
AU - Urbina, Jesús
AU - Sotelo, Julio A.
AU - Springmüller, Daniel
AU - Montalba, Cristian
AU - Letelier, Karis
AU - Tejos, Cristián
AU - Irarrázaval, Pablo
AU - Andia, Marcelo E.
AU - Razavi, Reza
AU - Valverde, Israel
AU - Uribe, Sergio A.
N1 - Publisher Copyright:
© 2016 International Society for Magnetic Resonance in Medicine
PY - 2016/9
Y1 - 2016/9
N2 - Purpose: To design and characterize a magnetic resonance imaging (MRI)-compatible aortic phantom simulating normal and aortic coarctation (AoCo) conditions and to compare its hemodynamics with healthy volunteers and AoCo patients. Materials and Methods: The phantom is composed of an MRI-compatible pump, control unit, aortic model, compliance chamber, nonreturn, and shutoff valves. The phantom without and with AoCo (13, 11, and 9 mm) was studied using 2D and 3D phase-contrast data and with a catheterization unit to measure pressures. The phantom data were compared with the mean values of 10 healthy volunteers and two AoCo patients. Results: Hemodynamic parameters in the normal phantom and healthy volunteers were: heart rate: 68/61 bpm, cardiac output: 3.5/4.5 L/min, peak flow and peak velocity (Vpeak) in the ascending aorta (AAo): 270/357 mL/s (significantly, P < 0.05) and 97/107 cm/s (not significantly, P = 0.16), and pressure in the AAo of the normal phantom of 131/58 mmHg. Hemodynamic parameters in the 13, 11, and 9 mm coarctation phantoms and Patients 1 and 2 were: heart rate: 75/75/75/97/78 bpm, cardiac output: 3.3/3.0/2.9/4.0/5.8 L/min, peak flow in the AAo: 245/265/215/244/376 mL/s, Vpeak in the AAo: 96/95/81/196/187 cm/s, Vpeak after the AoCo: 123/187/282/247/165 cm/s, pressure in the AAo: 124/56, 127/51, 133/50, 120/51 and 87/39 mmHg, and a trans-coarctation systolic pressure gradient: 7, 10, 30, 20, and 11 mmHg. Conclusion: We propose and characterize a normal and an AoCo phantom, whose hemodynamics, including velocity, flow, and pressure data are within the range of healthy volunteers and patients with AoCo. J. Magn. Reson. Imaging 2016;44:683–697.
AB - Purpose: To design and characterize a magnetic resonance imaging (MRI)-compatible aortic phantom simulating normal and aortic coarctation (AoCo) conditions and to compare its hemodynamics with healthy volunteers and AoCo patients. Materials and Methods: The phantom is composed of an MRI-compatible pump, control unit, aortic model, compliance chamber, nonreturn, and shutoff valves. The phantom without and with AoCo (13, 11, and 9 mm) was studied using 2D and 3D phase-contrast data and with a catheterization unit to measure pressures. The phantom data were compared with the mean values of 10 healthy volunteers and two AoCo patients. Results: Hemodynamic parameters in the normal phantom and healthy volunteers were: heart rate: 68/61 bpm, cardiac output: 3.5/4.5 L/min, peak flow and peak velocity (Vpeak) in the ascending aorta (AAo): 270/357 mL/s (significantly, P < 0.05) and 97/107 cm/s (not significantly, P = 0.16), and pressure in the AAo of the normal phantom of 131/58 mmHg. Hemodynamic parameters in the 13, 11, and 9 mm coarctation phantoms and Patients 1 and 2 were: heart rate: 75/75/75/97/78 bpm, cardiac output: 3.3/3.0/2.9/4.0/5.8 L/min, peak flow in the AAo: 245/265/215/244/376 mL/s, Vpeak in the AAo: 96/95/81/196/187 cm/s, Vpeak after the AoCo: 123/187/282/247/165 cm/s, pressure in the AAo: 124/56, 127/51, 133/50, 120/51 and 87/39 mmHg, and a trans-coarctation systolic pressure gradient: 7, 10, 30, 20, and 11 mmHg. Conclusion: We propose and characterize a normal and an AoCo phantom, whose hemodynamics, including velocity, flow, and pressure data are within the range of healthy volunteers and patients with AoCo. J. Magn. Reson. Imaging 2016;44:683–697.
KW - 3D PC-MRI
KW - aortic coarctation
KW - aortic phantom
KW - catheterization
KW - hemodynamic parameters
UR - http://www.scopus.com/inward/record.url?scp=84982253534&partnerID=8YFLogxK
U2 - 10.1002/jmri.25208
DO - 10.1002/jmri.25208
M3 - Article
C2 - 26969867
AN - SCOPUS:84982253534
SN - 1053-1807
VL - 44
SP - 683
EP - 697
JO - Journal of Magnetic Resonance Imaging
JF - Journal of Magnetic Resonance Imaging
IS - 3
ER -