Abstract
We present a wireless real-time object detection system utilizing single-board devices, cloud computing platforms and web-streaming. Currently, most inference applications statically perform tasks either on local machines or remote cloud servers. However, devices connected through cellular technologies face volatile network conditions, compromising detection performance. Furthermore, while the limited computing power of single-board computers degrade detection correctness, excessive power consumption of machine learning models used for inference reduces operation time. In this paper, we propose a dynamic system that monitors embedded device's wireless link quality and battery level to decide on detecting objects locally or remotely. The experimental results show that our dynamic offloading approach could reduce devices' energy usage while achieving high accuracy, real-time object detection.
Original language | English |
---|---|
Title of host publication | 2021 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings |
Editors | Dipti Srinivasan, Anna Wilbik |
Place of Publication | Piscataway NJ USA |
Publisher | IEEE, Institute of Electrical and Electronics Engineers |
Number of pages | 6 |
ISBN (Electronic) | 9781728190488 |
ISBN (Print) | 9781728190495 |
DOIs | |
Publication status | Published - 2021 |
Externally published | Yes |
Event | IEEE Symposium Series on Computational Intelligence (SSCI) 2021 - Orlando, United States of America Duration: 5 Dec 2021 → 7 Dec 2021 https://ieeexplore.ieee.org/xpl/conhome/9659537/proceeding (Proceedings) https://ieeessci2021.org/ (Website) |
Conference
Conference | IEEE Symposium Series on Computational Intelligence (SSCI) 2021 |
---|---|
Abbreviated title | SSCI 2021 |
Country/Territory | United States of America |
City | Orlando |
Period | 5/12/21 → 7/12/21 |
Internet address |
|
Keywords
- Machine learning
- Object detection
- WebRTC