TY - JOUR
T1 - Real-time analysis of atrazine biodegradation and sessile bacterial growth
T2 - a quartz crystal microbalance with dissipation monitoring study
AU - LeviRam, Inbar
AU - Gross, Amit
AU - McCarthy, David
AU - Herzberg, Moshe
PY - 2019/6/1
Y1 - 2019/6/1
N2 - Biodegradation is a fundamental process for removal of the environmentally prevalent herbicide, atrazine, from contaminated waters. Biodegradation is more efficient when bacteria are attached on surface of an adsorbing carrier that supports the microbial population. However, for various reasons, biodegradation is almost always monitored in the liquid phase. In this study, we employ a novel Quartz Crystal Microbalance with Dissipation technique (QCM-D) for continuous, real-time monitoring of the attachment of atrazine-degrading bacteria to the surface, atrazine adsorption and degradation, and the consequent proliferation of the irreversibly attached sessile bacteria. The effect of atrazine biodegradation was observed in a batch mode of operation, in which a significant frequency decrease of the piezoelectric sensor was observed in the QCM-D, due to the proliferation of atrazine-degrading bacteria on the expense of atrazine. The latter was confirmed microscopically. Results also suggest that the viscoelastic properties of the atrazine-degrading consortium immediately changed in response to the presence of atrazine, whereas those of the non-degrading consortium were not affected. Importantly though, atrazine adsorption was similar regardless of the sessile consortia layers. When the QCM-D flow cell was exposed to a continuous flow of saturated atrazine solution, the degrading consortium layer was significantly more fluidic compared to batch mode conditions. The magnitude and kinetics of atrazine adsorption, which were monitored using QCM-D, were higher on bacterial cells comparing to the pristine, polystyrene-coated sensor. Findings from the current study can improve bioremediation design and open an avenue for studies on biodegradation and adsorption of micro-pollutants using QCM-D technology.
AB - Biodegradation is a fundamental process for removal of the environmentally prevalent herbicide, atrazine, from contaminated waters. Biodegradation is more efficient when bacteria are attached on surface of an adsorbing carrier that supports the microbial population. However, for various reasons, biodegradation is almost always monitored in the liquid phase. In this study, we employ a novel Quartz Crystal Microbalance with Dissipation technique (QCM-D) for continuous, real-time monitoring of the attachment of atrazine-degrading bacteria to the surface, atrazine adsorption and degradation, and the consequent proliferation of the irreversibly attached sessile bacteria. The effect of atrazine biodegradation was observed in a batch mode of operation, in which a significant frequency decrease of the piezoelectric sensor was observed in the QCM-D, due to the proliferation of atrazine-degrading bacteria on the expense of atrazine. The latter was confirmed microscopically. Results also suggest that the viscoelastic properties of the atrazine-degrading consortium immediately changed in response to the presence of atrazine, whereas those of the non-degrading consortium were not affected. Importantly though, atrazine adsorption was similar regardless of the sessile consortia layers. When the QCM-D flow cell was exposed to a continuous flow of saturated atrazine solution, the degrading consortium layer was significantly more fluidic compared to batch mode conditions. The magnitude and kinetics of atrazine adsorption, which were monitored using QCM-D, were higher on bacterial cells comparing to the pristine, polystyrene-coated sensor. Findings from the current study can improve bioremediation design and open an avenue for studies on biodegradation and adsorption of micro-pollutants using QCM-D technology.
KW - Adsorption-desorption
KW - Atrazine removal
KW - Biodegradation
KW - Bioremediation
KW - Degrading consortium
KW - QCM-D
KW - Real time monitoring
KW - Solid-liquid interface
UR - http://www.scopus.com/inward/record.url?scp=85063112714&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2019.03.054
DO - 10.1016/j.chemosphere.2019.03.054
M3 - Article
AN - SCOPUS:85063112714
SN - 0045-6535
VL - 225
SP - 871
EP - 879
JO - Chemosphere
JF - Chemosphere
ER -