‘Real-life’ hippocampal-dependent spatial memory impairments in Huntington's disease

Yifat Glikmann-Johnston, Anna M. Carmichael, Emily-Clare Mercieca, Julie C. Stout

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

Hippocampal-dependent spatial memory impairments are seen in Huntington's disease animal models. Similar impairments were recently reported in Huntington's disease participants on analogous spatial memory tasks (e.g., virtual Morris Water Maze), however, these tasks do not translate well to the range of functions involved in day-to-day spatial cognition. In this study we examined ‘real-life’ hippocampal-dependent spatial memory in Huntington's disease participants. We studied premanifest Huntington's disease (N = 24), early manifest Huntington's disease (N = 14), and matched healthy controls (N = 33) with a virtual environment, which demanded spatial memory function on three levels: navigation, object location, and plan drawing. To examine the case for hippocampal-dependent spatial memory more closely, we compared the performance of our Huntington's disease participants to that of a group of temporal lobe epilepsy patients (N = 30) who were previously tested on the virtual environment. Spatial memory performance was also compared to two common neuropsychological tests of spatial cognition, the Paired Associates Learning from the Cambridge Neuropsychological Automated Test Battery, and the Rey–Osterrieth Complex Figure Test. People with early manifest Huntington's disease were impaired across all spatial memory tasks. Premanifest Huntington's disease participants were most notably impaired on the object location measure of the virtual environment, which is heavily dependent on hippocampal function, but showed no such impairments on the Paired Associates Learning or the Rey–Osterrieth Complex Figure Test. Object location memory and navigation performance did not differ between people with Huntington's disease and temporal lobe epilepsy. Aligned with studies in Huntington's disease animal models, ‘real-life’ spatial memory is impaired in people with Huntington's disease prior to clinical diagnosis. This alignment has important implications for testing treatments for Huntington's disease. From the standpoint of neurodegeneration, the dependence of our spatial memory measures on hippocampal function extends the focus of cognitive assessment research in Huntington's disease beyond its primary pathology within the striato-frontal circuit.

Original languageEnglish
Pages (from-to)46-60
Number of pages15
JournalCortex
Volume119
DOIs
Publication statusPublished - Oct 2019

Keywords

  • Animal models
  • Clinical trials
  • Cognitive assessment
  • Premanifest
  • Temporal lobe

Cite this

@article{df85ee60d3294895b1cef4dc30d9e850,
title = "‘Real-life’ hippocampal-dependent spatial memory impairments in Huntington's disease",
abstract = "Hippocampal-dependent spatial memory impairments are seen in Huntington's disease animal models. Similar impairments were recently reported in Huntington's disease participants on analogous spatial memory tasks (e.g., virtual Morris Water Maze), however, these tasks do not translate well to the range of functions involved in day-to-day spatial cognition. In this study we examined ‘real-life’ hippocampal-dependent spatial memory in Huntington's disease participants. We studied premanifest Huntington's disease (N = 24), early manifest Huntington's disease (N = 14), and matched healthy controls (N = 33) with a virtual environment, which demanded spatial memory function on three levels: navigation, object location, and plan drawing. To examine the case for hippocampal-dependent spatial memory more closely, we compared the performance of our Huntington's disease participants to that of a group of temporal lobe epilepsy patients (N = 30) who were previously tested on the virtual environment. Spatial memory performance was also compared to two common neuropsychological tests of spatial cognition, the Paired Associates Learning from the Cambridge Neuropsychological Automated Test Battery, and the Rey–Osterrieth Complex Figure Test. People with early manifest Huntington's disease were impaired across all spatial memory tasks. Premanifest Huntington's disease participants were most notably impaired on the object location measure of the virtual environment, which is heavily dependent on hippocampal function, but showed no such impairments on the Paired Associates Learning or the Rey–Osterrieth Complex Figure Test. Object location memory and navigation performance did not differ between people with Huntington's disease and temporal lobe epilepsy. Aligned with studies in Huntington's disease animal models, ‘real-life’ spatial memory is impaired in people with Huntington's disease prior to clinical diagnosis. This alignment has important implications for testing treatments for Huntington's disease. From the standpoint of neurodegeneration, the dependence of our spatial memory measures on hippocampal function extends the focus of cognitive assessment research in Huntington's disease beyond its primary pathology within the striato-frontal circuit.",
keywords = "Animal models, Clinical trials, Cognitive assessment, Premanifest, Temporal lobe",
author = "Yifat Glikmann-Johnston and Carmichael, {Anna M.} and Emily-Clare Mercieca and Stout, {Julie C.}",
year = "2019",
month = "10",
doi = "10.1016/j.cortex.2019.04.006",
language = "English",
volume = "119",
pages = "46--60",
journal = "Cortex",
issn = "0010-9452",
publisher = "Elsevier",

}

‘Real-life’ hippocampal-dependent spatial memory impairments in Huntington's disease. / Glikmann-Johnston, Yifat; Carmichael, Anna M.; Mercieca, Emily-Clare; Stout, Julie C.

In: Cortex, Vol. 119, 10.2019, p. 46-60.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - ‘Real-life’ hippocampal-dependent spatial memory impairments in Huntington's disease

AU - Glikmann-Johnston, Yifat

AU - Carmichael, Anna M.

AU - Mercieca, Emily-Clare

AU - Stout, Julie C.

PY - 2019/10

Y1 - 2019/10

N2 - Hippocampal-dependent spatial memory impairments are seen in Huntington's disease animal models. Similar impairments were recently reported in Huntington's disease participants on analogous spatial memory tasks (e.g., virtual Morris Water Maze), however, these tasks do not translate well to the range of functions involved in day-to-day spatial cognition. In this study we examined ‘real-life’ hippocampal-dependent spatial memory in Huntington's disease participants. We studied premanifest Huntington's disease (N = 24), early manifest Huntington's disease (N = 14), and matched healthy controls (N = 33) with a virtual environment, which demanded spatial memory function on three levels: navigation, object location, and plan drawing. To examine the case for hippocampal-dependent spatial memory more closely, we compared the performance of our Huntington's disease participants to that of a group of temporal lobe epilepsy patients (N = 30) who were previously tested on the virtual environment. Spatial memory performance was also compared to two common neuropsychological tests of spatial cognition, the Paired Associates Learning from the Cambridge Neuropsychological Automated Test Battery, and the Rey–Osterrieth Complex Figure Test. People with early manifest Huntington's disease were impaired across all spatial memory tasks. Premanifest Huntington's disease participants were most notably impaired on the object location measure of the virtual environment, which is heavily dependent on hippocampal function, but showed no such impairments on the Paired Associates Learning or the Rey–Osterrieth Complex Figure Test. Object location memory and navigation performance did not differ between people with Huntington's disease and temporal lobe epilepsy. Aligned with studies in Huntington's disease animal models, ‘real-life’ spatial memory is impaired in people with Huntington's disease prior to clinical diagnosis. This alignment has important implications for testing treatments for Huntington's disease. From the standpoint of neurodegeneration, the dependence of our spatial memory measures on hippocampal function extends the focus of cognitive assessment research in Huntington's disease beyond its primary pathology within the striato-frontal circuit.

AB - Hippocampal-dependent spatial memory impairments are seen in Huntington's disease animal models. Similar impairments were recently reported in Huntington's disease participants on analogous spatial memory tasks (e.g., virtual Morris Water Maze), however, these tasks do not translate well to the range of functions involved in day-to-day spatial cognition. In this study we examined ‘real-life’ hippocampal-dependent spatial memory in Huntington's disease participants. We studied premanifest Huntington's disease (N = 24), early manifest Huntington's disease (N = 14), and matched healthy controls (N = 33) with a virtual environment, which demanded spatial memory function on three levels: navigation, object location, and plan drawing. To examine the case for hippocampal-dependent spatial memory more closely, we compared the performance of our Huntington's disease participants to that of a group of temporal lobe epilepsy patients (N = 30) who were previously tested on the virtual environment. Spatial memory performance was also compared to two common neuropsychological tests of spatial cognition, the Paired Associates Learning from the Cambridge Neuropsychological Automated Test Battery, and the Rey–Osterrieth Complex Figure Test. People with early manifest Huntington's disease were impaired across all spatial memory tasks. Premanifest Huntington's disease participants were most notably impaired on the object location measure of the virtual environment, which is heavily dependent on hippocampal function, but showed no such impairments on the Paired Associates Learning or the Rey–Osterrieth Complex Figure Test. Object location memory and navigation performance did not differ between people with Huntington's disease and temporal lobe epilepsy. Aligned with studies in Huntington's disease animal models, ‘real-life’ spatial memory is impaired in people with Huntington's disease prior to clinical diagnosis. This alignment has important implications for testing treatments for Huntington's disease. From the standpoint of neurodegeneration, the dependence of our spatial memory measures on hippocampal function extends the focus of cognitive assessment research in Huntington's disease beyond its primary pathology within the striato-frontal circuit.

KW - Animal models

KW - Clinical trials

KW - Cognitive assessment

KW - Premanifest

KW - Temporal lobe

UR - http://www.scopus.com/inward/record.url?scp=85065103149&partnerID=8YFLogxK

U2 - 10.1016/j.cortex.2019.04.006

DO - 10.1016/j.cortex.2019.04.006

M3 - Article

VL - 119

SP - 46

EP - 60

JO - Cortex

JF - Cortex

SN - 0010-9452

ER -