TY - JOUR
T1 - Rapid thermally processed hierarchical titania-based hollow fibres with tunable physicochemical and photocatalytic properties
AU - Zhang, Tianlong
AU - Elma, Muthia
AU - Xie, Fengwei
AU - Motuzas, Julius
AU - Zhang, Xiwang
AU - Wang, David K.
PY - 2018/11/29
Y1 - 2018/11/29
N2 - A series of photocatalytic TiO2–carbon composite hollow fibres (HFs) was prepared in this study by a wet-dry phase inversion spinning method followed by a rapid thermal processing (RTP). The RTP method consists of two stages: (1) calcination at 800 °C for 15 min encased in a quartz tube followed by (2) a short open heating exposure at 800 °C for 0 to 7.5 min in air. The innovative two-stage RTP method led to a time saving of more than 90%. Results revealed that the pyrolysis conditions during the second stage of HF fabrication were essential to the final physical and chemical properties of resultant TiO2-carbon HFs, such as TiO2 crystallinity and carbon content, mechanical, textural and electronic properties, as well as photocatalytic reactivity. The best results show that HFs pyrolysed for a short duration (< 2 min) in the second stage produced a high microporous surface area of 217.8 m2·g−1, a good mechanical strength of 11 MPa and a TiO2 anatase-to-rutile (A/R) ratio of 1.534 on the HF surface. The HFs also achieved a 68% degradation of acid orange 7 dye with a kapp of 0.0147 min−1 based on a Langmuir-Hinshelwood model during the photocatalysis under UV light. Thus, this work provides a new synthesis protocol with significant time and cost savings to produce high-quality HFs for wastewater treatment.
AB - A series of photocatalytic TiO2–carbon composite hollow fibres (HFs) was prepared in this study by a wet-dry phase inversion spinning method followed by a rapid thermal processing (RTP). The RTP method consists of two stages: (1) calcination at 800 °C for 15 min encased in a quartz tube followed by (2) a short open heating exposure at 800 °C for 0 to 7.5 min in air. The innovative two-stage RTP method led to a time saving of more than 90%. Results revealed that the pyrolysis conditions during the second stage of HF fabrication were essential to the final physical and chemical properties of resultant TiO2-carbon HFs, such as TiO2 crystallinity and carbon content, mechanical, textural and electronic properties, as well as photocatalytic reactivity. The best results show that HFs pyrolysed for a short duration (< 2 min) in the second stage produced a high microporous surface area of 217.8 m2·g−1, a good mechanical strength of 11 MPa and a TiO2 anatase-to-rutile (A/R) ratio of 1.534 on the HF surface. The HFs also achieved a 68% degradation of acid orange 7 dye with a kapp of 0.0147 min−1 based on a Langmuir-Hinshelwood model during the photocatalysis under UV light. Thus, this work provides a new synthesis protocol with significant time and cost savings to produce high-quality HFs for wastewater treatment.
KW - Carbon char
KW - Hollow fibre
KW - Photocatalysis
KW - Rapid thermal processing
KW - Titanium dioxide
UR - http://www.scopus.com/inward/record.url?scp=85047830030&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2018.05.063
DO - 10.1016/j.seppur.2018.05.063
M3 - Article
AN - SCOPUS:85047830030
SN - 1383-5866
VL - 206
SP - 99
EP - 106
JO - Separation and Purification Technology
JF - Separation and Purification Technology
ER -