Rapid Approach for Detection of Antibiotic Resistance in Bacteria Using Vibrational Spectroscopy

Kamila Kochan, Cara Nethercott, Jamileh Taghavimoghaddam, Zack Richardson, Elizabeth Lai, Simon A. Crawford, Anton Y. Peleg, Bayden R. Wood, Philip Heraud

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)


Here, we applied vibrational spectroscopy to investigate the drug response following incubation of S. aureus with oxacillin. The main focus of this work was to identify the chemical changes caused by oxacillin over time and to determine the feasibility of the spectroscopic approach to detect antimicrobial resistance. The oxacillin-induced changes in the chemical composition of susceptible bacteria, preceding (and leading to) the inhibition of growth, included an increase in the relative content of nucleic acids, alteration in the α-helical/β-sheet protein ratio, structural changes in carbohydrates (observed via changes in the band at 1035 cm-1), and significant thickening of the cell wall. These observations enabled a dose-dependent discrimination between susceptible bacteria incubated with and without oxacillin after 120 min. In methicillin resistant strains, no spectral differences were observed between cells, regardless of drug exposure. These results pave the way for a new, rapid spectroscopic approach to detect drug resistance in pathogens, based on their early positive/negative drug response.

Original languageEnglish
Pages (from-to)8235-8243
Number of pages9
JournalAnalytical Chemistry
Issue number12
Publication statusPublished - 16 Jun 2020

Cite this