Radical 3-subgroups of the finite groups of Lie type E6

Jianbei An, Heiko Dietrich, Shih Chang Huang

Research output: Contribution to journalArticleResearchpeer-review

Abstract

We consider the universal version of the finite exceptional group of Lie type G=E6 ε(q) with 3|q−ε, where E6 +1(q)=E6(q) and E6 −1(q)=2E6(q). We classify, up to conjugacy, the radical 3-subgroups of G. As an application, the essential 3-rank of the Frobenius category FD(G) is determined, where D is a Sylow 3-subgroup of G.

Original languageEnglish
Pages (from-to)4040-4067
Number of pages28
JournalJournal of Pure and Applied Algebra
Volume222
Issue number12
DOIs
Publication statusPublished - 1 Dec 2018

Keywords

  • radical subgroups
  • finite groups of Lie type
  • exceptional type

Cite this

An, Jianbei ; Dietrich, Heiko ; Huang, Shih Chang. / Radical 3-subgroups of the finite groups of Lie type E6. In: Journal of Pure and Applied Algebra. 2018 ; Vol. 222, No. 12. pp. 4040-4067.
@article{7aad2423360546b19553b7882f18f93b,
title = "Radical 3-subgroups of the finite groups of Lie type E6",
abstract = "We consider the universal version of the finite exceptional group of Lie type G=E6 ε(q) with 3|q−ε, where E6 +1(q)=E6(q) and E6 −1(q)=2E6(q). We classify, up to conjugacy, the radical 3-subgroups of G. As an application, the essential 3-rank of the Frobenius category FD(G) is determined, where D is a Sylow 3-subgroup of G.",
keywords = "radical subgroups, finite groups of Lie type, exceptional type",
author = "Jianbei An and Heiko Dietrich and Huang, {Shih Chang}",
year = "2018",
month = "12",
day = "1",
doi = "10.1016/j.jpaa.2018.02.019",
language = "English",
volume = "222",
pages = "4040--4067",
journal = "Journal of Pure and Applied Algebra",
issn = "0022-4049",
publisher = "Elsevier",
number = "12",

}

Radical 3-subgroups of the finite groups of Lie type E6. / An, Jianbei; Dietrich, Heiko; Huang, Shih Chang.

In: Journal of Pure and Applied Algebra, Vol. 222, No. 12, 01.12.2018, p. 4040-4067.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Radical 3-subgroups of the finite groups of Lie type E6

AU - An, Jianbei

AU - Dietrich, Heiko

AU - Huang, Shih Chang

PY - 2018/12/1

Y1 - 2018/12/1

N2 - We consider the universal version of the finite exceptional group of Lie type G=E6 ε(q) with 3|q−ε, where E6 +1(q)=E6(q) and E6 −1(q)=2E6(q). We classify, up to conjugacy, the radical 3-subgroups of G. As an application, the essential 3-rank of the Frobenius category FD(G) is determined, where D is a Sylow 3-subgroup of G.

AB - We consider the universal version of the finite exceptional group of Lie type G=E6 ε(q) with 3|q−ε, where E6 +1(q)=E6(q) and E6 −1(q)=2E6(q). We classify, up to conjugacy, the radical 3-subgroups of G. As an application, the essential 3-rank of the Frobenius category FD(G) is determined, where D is a Sylow 3-subgroup of G.

KW - radical subgroups

KW - finite groups of Lie type

KW - exceptional type

UR - http://www.scopus.com/inward/record.url?scp=85042885243&partnerID=8YFLogxK

U2 - 10.1016/j.jpaa.2018.02.019

DO - 10.1016/j.jpaa.2018.02.019

M3 - Article

VL - 222

SP - 4040

EP - 4067

JO - Journal of Pure and Applied Algebra

JF - Journal of Pure and Applied Algebra

SN - 0022-4049

IS - 12

ER -