Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple

Abuzar Taheri, Douglas R. MacFarlane, Cristina Pozo-Gonzalo, Jennifer M. Pringle

Research output: Contribution to journalArticleResearchpeer-review

67 Citations (Scopus)

Abstract

Thermoelectrochemical cells, also known as thermocells, are electrochemical devices for the conversion of thermal energy directly into electricity. They are a promising method for harvesting low-grade waste heat from a variety of different natural and manmade sources. The development of solid- or quasi-solid-state electrolytes for thermocells could address the possible leakage problems of liquid electrolytes and make this technology more applicable for wearable devices. Here, we report the gelation of an organic-solvent-based electrolyte system containing a redox couple for application in thermocell technologies. The effect of gelation of the liquid electrolyte, comprising a cobalt bipyridyl redox couple dissolved in 3-methoxypropionitrile (MPN), on the performance of thermocells was investigated. Polyvinylidene difluoride (PVDF) and poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) were used for gelation of the electrolyte, and the influence of the different polymers on the mechanical properties was studied. The Seebeck coefficient and diffusivity of the cobalt redox couple were measured in both liquid and gelled electrolytes, and the effect of gelation on the thermocell performance is reported. Finally, the cell performance was further improved by optimizing the concentration of the redox couple and the separation between the hot and cold electrodes, and the stability of the device over 25 h of operation is demonstrated.

Original languageEnglish
Pages (from-to)2788-2796
Number of pages9
JournalChemSusChem
Volume11
Issue number16
DOIs
Publication statusPublished - 22 Aug 2018

Keywords

  • cobalt
  • electrolyte
  • energy conversion
  • redox chemistry
  • thermoelectrochemical cells
  • ARC Centre of Excellence for Electromaterials Science

    Wallace, G. G. (Primary Chief Investigator (PCI)), Forsyth, M. (Chief Investigator (CI)), Macfarlane, D. (Chief Investigator (CI)), Officer, D. (Chief Investigator (CI)), Cook, M. J. (Chief Investigator (CI)), Dodds, S. (Chief Investigator (CI)), Spinks, G. (Chief Investigator (CI)), Alici, G. (Chief Investigator (CI)), Moulton, S. E. (Chief Investigator (CI)), in het Panhuis, M. (Chief Investigator (CI)), Kapsa, R. M. I. (Chief Investigator (CI)), Higgins, M. (Chief Investigator (CI)), Mozer, A. (Chief Investigator (CI)), Crook, J. (Chief Investigator (CI)), Innis, P. (Chief Investigator (CI)), Coote, M. L. (Chief Investigator (CI)), Wang, X. (Chief Investigator (CI)), Howlett, P. (Chief Investigator (CI)), Pringle, J. (Chief Investigator (CI)), Hancock, L. (Chief Investigator (CI)), Paull, B. (Chief Investigator (CI)), Sparrow, R. (Chief Investigator (CI)), Zhang, J. (Chief Investigator (CI)), Spiccia, L. (Chief Investigator (CI)), Diamond, D. (Partner Investigator (PI)), Guldi, D. (Partner Investigator (PI)), Kim, S. J. (Partner Investigator (PI)), Unwin, P. (Partner Investigator (PI)) & Watanabe, M. (Partner Investigator (PI))

    ARC - Australian Research Council

    30/06/1430/06/21

    Project: Research

Cite this