Quantifying nanoparticle internalization using a high throughput internalization assay

Sarah K Mann, Ewa Czuba, Laura I Selby, Georgina K. Such, Angus P R Johnston

Research output: Contribution to journalArticleResearchpeer-review

12 Citations (Scopus)

Abstract

Purpose: The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. 

Methods: Self-assembling polymeric ‘pHlexi’ nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. 

Results: Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. 

Conclusion: SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.

Original languageEnglish
Pages (from-to)2421-2432
Number of pages12
JournalPharmaceutical Research
Volume33
Issue number10
DOIs
Publication statusPublished - 1 Oct 2016

Keywords

  • endocytosis
  • inhibitor
  • internalization
  • nanoparticles
  • sensor

Cite this