Quantification of functional selectivity at the human {alpha}1A-adrenoceptor

Bronwyn Anne Evans, Natalie Broxton, Jon Merlin, Masaaki Sato, Dana Sabine Hutchinson, Arthur Christopoulos, Roger James Summers

Research output: Contribution to journalArticleResearchpeer-review

60 Citations (Scopus)


Although G protein-coupled receptors are often categorized in terms of their primary coupling to a given type of Galpha protein subunit, it is now well established that many show promiscuous coupling and activate multiple signaling pathways. Furthermore, some agonists selectively activate signaling pathways by promoting interaction between distinct receptor conformational states and particular Galpha subunits or alternative signaling proteins. We have tested the capacity of agonists to stimulate Ca(2+) release, cAMP accumulation, and changes in extracellular acidification rate (ECAR) at the human alpha(1A)-adrenoceptor. Signaling bias factors were determined by novel application of an operational model of agonism and compared with the reference endogenous agonist norepinephrine; values significantly different from 1.0 indicated an agonist that promoted receptor conformations distinct from that favored by norepinephrine. Oxymetazoline was a full agonist for ECAR and a partial agonist for Ca(2+) release (bias factor 8.2) but failed to stimulate cAMP production. Phenylephrine showed substantial bias toward ECAR versus Ca(2+) release or cAMP accumulation (bias factors 21 and 33, respectively) but did not display bias between Ca(2+) and cAMP pathways. Cirazoline and N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen -1-yl]methanesulfonamide (A61603) displayed bias toward cAMP relative to Ca(2+) release (bias factors of 7.4 and 8.6). It is noteworthy that epinephrine, a second endogenous adrenoceptor agonist, did not display bias relative to norepinephrine. Our finding that phenylephrine displayed significant signaling bias, despite being highly similar in structure to epinephrine, indicates that subtle differences in agonist-receptor interaction can affect conformational changes in cytoplasmic domains and thereby modulate the repertoire of effector proteins that are activated.
Original languageEnglish
Pages (from-to)298 - 307
Number of pages10
JournalMolecular Pharmacology
Issue number2
Publication statusPublished - 2011

Cite this