Projects per year
Abstract
Bacterial biofilms account for up to 80% of all communityacquired infections for which bacterial eradication is currently not achievable using conventional antimicrobial treatments. The protective matrix that engulfs biofilm-associated bacteria frequently renders antibiotics ineffective. Glycoside hydrolases are a class of enzymes that break down the biofilm matrix, thereby increasing the effectiveness of antibiotics. Herein, nanostructured liquid crystals composed of glyceryl monooleate (GMO) were investigated as an infection responsive delivery system for alginate lyase (glycoside hydrolase) and gentamicin (antibiotic) to treat Pseudomonas biofilms. The presence of Pseudomonas lipase triggered the release of alginate lyase and gentamicin from the GMO liquid crystals. Treatment with the liquid crystals containing alginate lyase and gentamicin resulted in a greater than 2-log reduction in mucoid Pseudomonas aeruginosa (clinical isolate) biofilm. The anti-biofilm activity of alginate lyase and gentamicin from the liquid crystals was sustained for 2 days and equivalent to the respective unformulated solution treatments. Accordingly, GMO based liquid crystals are a promising responsive delivery system for alginate lyase and gentamicin to combat topical Pseudomonas infections.
Original language | English |
---|---|
Pages (from-to) | 281-288 |
Number of pages | 8 |
Journal | ACS Applied Bio Materials |
Volume | 1 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Jan 2018 |
Keywords
- Alginate lyase
- Biofilm
- Gentamicin
- Glyceryl monooleate
- Liquid crystals
Projects
- 1 Finished
-
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
Davis, T., Boyd, B., Bunnett, N., Porter, C., Caruso, F., Kent, S., Thordarson, P., Kearnes, M., Gooding, J., Kavallaris, M., Thurecht, K., Whittaker, A. K., Parton, R., Corrie, S. R., Johnston, A., McGhee, J., Greguric, I. D., Stevens, M. M., Lewis, J. S., Lee, D. S., Alexander, C., Dawson, K., Hawker, C., Haddleton, D., Thierry, B., Prestidge, C. A., Meyer, A., Jones-Jayasinghe, N., Voelcker, N., Nann, T. & McLean, K.
Australian Research Council (ARC), Monash University, University of Melbourne, University of New South Wales (UNSW), University of Queensland , University of South Australia, Monash University – Internal Faculty Contribution, University of Wisconsin Madison, Memorial Sloan Kettering Cancer Center, University of California System, University College Dublin, Imperial College London, University of Warwick, Sungkyunkwan University, Australian Nuclear Science and Technology Organisation (ANSTO) , University of Nottingham
30/06/14 → 29/06/21
Project: Research