TY - JOUR
T1 - Proteinase inhibitor 6 cannot be secreted, which suggests it is a new type of cellular serpin
AU - Scott, Fiona L.
AU - Coughlin, Paul B.
AU - Bird, Catherina
AU - Cerruti, Loretta
AU - Hayman, John A.
AU - Bird, Phillip
PY - 1996/1/19
Y1 - 1996/1/19
N2 - We have recently described a new serine proteinase inhibitor, proteinase inhibitor 6 (PI-6). This serpin has features that suggest it may function intracellularly, but its close resemblance to ovalbumin serpins like plasminogen activator inhibitor 2 (PAI-2) raises the possibility that it is secreted to regulate an extracellular proteinase. To determine whether PI-6 is secreted, we have examined its cellular distribution by immunohistochemistry and have attempted to induce its release from platelets and from cultured cells. We find that PI-6 is present in endothelial and epithelial cells, but it is apparently cytoplasmic and it is not released from cells in response to phorbol ester, dibutyryl cAMP or tumor necrosis factor α treatment. It is also not released from activated platelets. The addition of a conventional signal peptide to the amino terminus of PI-6 directed its translocation into the endoplasmic reticulum (ER), resulting in glycosylation but not secretion of the molecule. By contrast, the addition of the same signal peptide to PAI-2 markedly enhanced its translocation and secretion. Glycosylated PI-6 was sequestered in the ER and was incapable of interacting with thrombin. The failure of PI-6 to move along the secretory pathway, and the loss of inhibitory function of ER-localized PI-6, demonstrates that unlike PAI-2, PI-6 is not naturally secreted. Taken together, these results suggest that PI-6 has evolved to fulfil an intracellular role and that it represents a new type of cellular serpin.
AB - We have recently described a new serine proteinase inhibitor, proteinase inhibitor 6 (PI-6). This serpin has features that suggest it may function intracellularly, but its close resemblance to ovalbumin serpins like plasminogen activator inhibitor 2 (PAI-2) raises the possibility that it is secreted to regulate an extracellular proteinase. To determine whether PI-6 is secreted, we have examined its cellular distribution by immunohistochemistry and have attempted to induce its release from platelets and from cultured cells. We find that PI-6 is present in endothelial and epithelial cells, but it is apparently cytoplasmic and it is not released from cells in response to phorbol ester, dibutyryl cAMP or tumor necrosis factor α treatment. It is also not released from activated platelets. The addition of a conventional signal peptide to the amino terminus of PI-6 directed its translocation into the endoplasmic reticulum (ER), resulting in glycosylation but not secretion of the molecule. By contrast, the addition of the same signal peptide to PAI-2 markedly enhanced its translocation and secretion. Glycosylated PI-6 was sequestered in the ER and was incapable of interacting with thrombin. The failure of PI-6 to move along the secretory pathway, and the loss of inhibitory function of ER-localized PI-6, demonstrates that unlike PAI-2, PI-6 is not naturally secreted. Taken together, these results suggest that PI-6 has evolved to fulfil an intracellular role and that it represents a new type of cellular serpin.
UR - http://www.scopus.com/inward/record.url?scp=0030025631&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.3.1605
DO - 10.1074/jbc.271.3.1605
M3 - Article
C2 - 8576159
AN - SCOPUS:0030025631
SN - 1083-351X
VL - 271
SP - 1605
EP - 1612
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 3
ER -