TY - JOUR
T1 - Protective effects of flavonol isoquercitrin, against 6-hydroxy dopamine (6-OHDA) - Induced toxicity in PC12 cells
AU - Magalingam, Kasthuri Bai
AU - Radhakrishnan, Ammu
AU - Haleagrahara, Nagaraja
PY - 2014/1/21
Y1 - 2014/1/21
N2 - Background: Free radicals-induced neurodegeneration is one of the many causes of Parkinson's disease (PD). This study investigated the neuroprotective effects of flavonol isoquercitrin against toxicity induced by 6-hydroxy-dopamine (6-OHDA) in rat pheochromocytoma (PC12) cells. Methods. PC12 cells were pretreated with different concentrations of isoquercitrin for 4, 8 and 12 hours and incubated with 6-OHDA for 24 hours to induce oxidative cell damage. Results: A significant cytoprotective activity was observed in isoquercitrin pre-treated cells in a dose-dependent manner. There was a significant increase (P < 0.01) in the antioxidant enzymes namely superoxide dismutase, catalase, glutathione peroxidase, and glutathione in isoquercitrin pretreated cells compared to cells incubated with 6-OHDA alone. Isoquercitrin significantly reduced (P < 0.01) lipid peroxidation in 6-OHDA treated cells. These results suggested that isoquercitrin protects PC 12 cells against 6-OHDA-induced oxidative stress. Conclusions: The present study suggests the protective role of isoquercitrin on 6-hydroxydopamine-induced toxicity by virtue of its antioxidant potential. Isoquercitrin could be a potential therapeutic agent against neurodegeneration in Parkinson's disease.
AB - Background: Free radicals-induced neurodegeneration is one of the many causes of Parkinson's disease (PD). This study investigated the neuroprotective effects of flavonol isoquercitrin against toxicity induced by 6-hydroxy-dopamine (6-OHDA) in rat pheochromocytoma (PC12) cells. Methods. PC12 cells were pretreated with different concentrations of isoquercitrin for 4, 8 and 12 hours and incubated with 6-OHDA for 24 hours to induce oxidative cell damage. Results: A significant cytoprotective activity was observed in isoquercitrin pre-treated cells in a dose-dependent manner. There was a significant increase (P < 0.01) in the antioxidant enzymes namely superoxide dismutase, catalase, glutathione peroxidase, and glutathione in isoquercitrin pretreated cells compared to cells incubated with 6-OHDA alone. Isoquercitrin significantly reduced (P < 0.01) lipid peroxidation in 6-OHDA treated cells. These results suggested that isoquercitrin protects PC 12 cells against 6-OHDA-induced oxidative stress. Conclusions: The present study suggests the protective role of isoquercitrin on 6-hydroxydopamine-induced toxicity by virtue of its antioxidant potential. Isoquercitrin could be a potential therapeutic agent against neurodegeneration in Parkinson's disease.
KW - Antioxidant Flavonoids 6-hydroxydopamine Parkinson's disease Oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=84892573315&partnerID=8YFLogxK
U2 - 10.1186/1756-0500-7-49
DO - 10.1186/1756-0500-7-49
M3 - Article
C2 - 24443837
AN - SCOPUS:84892573315
SN - 1756-0500
VL - 7
JO - BMC Research Notes
JF - BMC Research Notes
IS - 1
M1 - 49
ER -