Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to journalReview ArticleResearchpeer-review

Abstract

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90 % credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–20deg2 requires at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

Original languageEnglish
Article number3
Number of pages52
JournalLiving Reviews in Relativity
Volume21
Issue number1
DOIs
Publication statusPublished - 1 Dec 2018

Keywords

  • Data analysis
  • Electromagnetic counterparts
  • Gravitational waves
  • Gravitational-wave detectors

Cite this

KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration. / Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. In: Living Reviews in Relativity. 2018 ; Vol. 21, No. 1.
@article{6bc15ecfff314b6da655dfab40606543,
title = "Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA",
abstract = "We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90 {\%} credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–20deg2 requires at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.",
keywords = "Data analysis, Electromagnetic counterparts, Gravitational waves, Gravitational-wave detectors",
author = "Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {M. R.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and T. Akutsu and B. Allen and A. Allocca and Altin, {P. A.} and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and M. Ando and S. Appert and K. Arai and A. Araya and Araya, {M. C.} and Areeda, {J. S.} and N. Arnaud and Arun, {K. G.} and H. Asada and S. Ascenzi and G. Ashton and Y. Aso and M. Ast and Aston, {S. M.} and P. Astone and S. Atsuta and P. Aufmuth and C. Aulbert and A. Avila-Alvarez and K. Awai and S. Babak and P. Bacon and Bader, {M. K.M.} and L. Baiotti and Baker, {P. T.} and F. Baldaccini and G. Ballardin and Ballmer, {S. W.} and Barayoga, {J. C.} and Barclay, {S. E.} and Barish, {B. C.} and D. Barker and F. Barone and B. Barr and L. Barsotti and M. Barsuglia and D. Barta and J. Bartlett and Barton, {M. A.} and I. Bartos and R. Bassiri and A. Basti and Batch, {J. C.} and C. Baune and V. Bavigadda and M. Bazzan and B. B{\'e}csy and C. Beer and M. Bejger and I. Belahcene and M. Belgin and Bell, {A. S.} and Berger, {B. K.} and G. Bergmann and Berry, {C. P.L.} and D. Bersanetti and A. Bertolini and J. Betzwieser and S. Bhagwat and R. Bhandare and Bilenko, {I. A.} and G. Billingsley and Billman, {C. R.} and J. Birch and R. Birney and O. Birnholtz and S. Biscans and A. Bisht and M. Bitossi and C. Biwer and Bizouard, {M. A.} and Blackburn, {J. K.} and J. Blackman and Blair, {C. D.} and Blair, {D. G.} and Blair, {R. M.} and S. Bloemen and O. Bock and M. Boer and G. Bogaert and A. Bohe and F. Bondu and R. Bonnand and Boom, {B. A.} and R. Bork and V. Boschi and S. Bose and Y. Bouffanais and A. Bozzi and C. Bradaschia and Brady, {P. R.} and Braginsky, {V. B.} and M. Branchesi and Brau, {J. E.} and T. Briant and A. Brillet and M. Brinkmann and V. Brisson and P. Brockill and Broida, {J. E.} and Brooks, {A. F.} and Brown, {D. A.} and Brown, {D. D.} and Brown, {N. M.} and S. Brunett and Buchanan, {C. C.} and A. Buikema and T. Bulik and Bulten, {H. J.} and A. Buonanno and D. Buskulic and C. Buy and Byer, {R. L.} and M. Cabero and L. Cadonati and G. Cagnoli and C. Cahillane and J. Calder{\'o}n Bustillo and Callister, {T. A.} and E. Calloni and Camp, {J. B.} and Cannon, {K. C.} and H. Cao and J. Cao and Capano, {C. D.} and E. Capocasa and F. Carbognani and S. Caride and J. Casanueva Diaz and C. Casentini and S. Caudill and M. Cavagli{\`a} and F. Cavalier and R. Cavalieri and G. Cella and Cepeda, {C. B.} and L. Cerboni Baiardi and G. Cerretani and E. Cesarini and Chamberlin, {S. J.} and M. Chan and S. Chao and P. Charlton and E. Chassande-Mottin and Cheeseboro, {B. D.} and Chen, {H. Y.} and Y. Chen and Cheng, {H. P.} and A. Chincarini and A. Chiummo and T. Chmiel and Cho, {H. S.} and M. Cho and Chow, {J. H.} and N. Christensen and Q. Chu and Chua, {A. J.K.} and S. Chua and S. Chung and G. Ciani and F. Clara and Clark, {J. A.} and F. Cleva and C. Cocchieri and E. Coccia and Cohadon, {P. F.} and A. Colla and Collette, {C. G.} and L. Cominsky and M. Constancio and L. Conti and Cooper, {S. J.} and Corbitt, {T. R.} and N. Cornish and A. Corsi and S. Cortese and Costa, {C. A.} and Coughlin, {M. W.} and Coughlin, {S. B.} and Coulon, {J. P.} and Countryman, {S. T.} and P. Couvares and Covas, {P. B.} and Cowan, {E. E.} and Coward, {D. M.} and Cowart, {M. J.} and Coyne, {D. C.} and R. Coyne and Creighton, {J. D.E.} and Creighton, {T. D.} and J. Cripe and Crowder, {S. G.} and Cullen, {T. J.} and A. Cumming and L. Cunningham and E. Cuoco and Canton, {T. Dal} and Danilishin, {S. L.} and S. D’Antonio and K. Danzmann and A. Dasgupta and {Da Silva Costa}, {C. F.} and V. Dattilo and I. Dave and M. Davier and Davies, {G. S.} and D. Davis and Daw, {E. J.} and B. Day and R. Day and S. De and D. DeBra and G. Debreczeni and J. Degallaix and {De Laurentis}, M. and S. Del{\'e}glise and {Del Pozzo}, W. and T. Denker and T. Dent and V. Dergachev and Lasky, {P D} and Y Levin and S. Qiu and L. Sammut and Smith, {R. J.E.} and E Thrane and C Whittle and Zhu, {X. J.} and {KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration}",
year = "2018",
month = "12",
day = "1",
doi = "10.1007/s41114-018-0012-9",
language = "English",
volume = "21",
journal = "Living Reviews in Relativity",
issn = "1433-8351",
publisher = "Springer",
number = "1",

}

Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. / KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration.

In: Living Reviews in Relativity, Vol. 21, No. 1, 3, 01.12.2018.

Research output: Contribution to journalReview ArticleResearchpeer-review

TY - JOUR

T1 - Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abernathy, M. R.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Akutsu, T.

AU - Allen, B.

AU - Allocca, A.

AU - Altin, P. A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Ando, M.

AU - Appert, S.

AU - Arai, K.

AU - Araya, A.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Asada, H.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Aso, Y.

AU - Ast, M.

AU - Aston, S. M.

AU - Astone, P.

AU - Atsuta, S.

AU - Aufmuth, P.

AU - Aulbert, C.

AU - Avila-Alvarez, A.

AU - Awai, K.

AU - Babak, S.

AU - Bacon, P.

AU - Bader, M. K.M.

AU - Baiotti, L.

AU - Baker, P. T.

AU - Baldaccini, F.

AU - Ballardin, G.

AU - Ballmer, S. W.

AU - Barayoga, J. C.

AU - Barclay, S. E.

AU - Barish, B. C.

AU - Barker, D.

AU - Barone, F.

AU - Barr, B.

AU - Barsotti, L.

AU - Barsuglia, M.

AU - Barta, D.

AU - Bartlett, J.

AU - Barton, M. A.

AU - Bartos, I.

AU - Bassiri, R.

AU - Basti, A.

AU - Batch, J. C.

AU - Baune, C.

AU - Bavigadda, V.

AU - Bazzan, M.

AU - Bécsy, B.

AU - Beer, C.

AU - Bejger, M.

AU - Belahcene, I.

AU - Belgin, M.

AU - Bell, A. S.

AU - Berger, B. K.

AU - Bergmann, G.

AU - Berry, C. P.L.

AU - Bersanetti, D.

AU - Bertolini, A.

AU - Betzwieser, J.

AU - Bhagwat, S.

AU - Bhandare, R.

AU - Bilenko, I. A.

AU - Billingsley, G.

AU - Billman, C. R.

AU - Birch, J.

AU - Birney, R.

AU - Birnholtz, O.

AU - Biscans, S.

AU - Bisht, A.

AU - Bitossi, M.

AU - Biwer, C.

AU - Bizouard, M. A.

AU - Blackburn, J. K.

AU - Blackman, J.

AU - Blair, C. D.

AU - Blair, D. G.

AU - Blair, R. M.

AU - Bloemen, S.

AU - Bock, O.

AU - Boer, M.

AU - Bogaert, G.

AU - Bohe, A.

AU - Bondu, F.

AU - Bonnand, R.

AU - Boom, B. A.

AU - Bork, R.

AU - Boschi, V.

AU - Bose, S.

AU - Bouffanais, Y.

AU - Bozzi, A.

AU - Bradaschia, C.

AU - Brady, P. R.

AU - Braginsky, V. B.

AU - Branchesi, M.

AU - Brau, J. E.

AU - Briant, T.

AU - Brillet, A.

AU - Brinkmann, M.

AU - Brisson, V.

AU - Brockill, P.

AU - Broida, J. E.

AU - Brooks, A. F.

AU - Brown, D. A.

AU - Brown, D. D.

AU - Brown, N. M.

AU - Brunett, S.

AU - Buchanan, C. C.

AU - Buikema, A.

AU - Bulik, T.

AU - Bulten, H. J.

AU - Buonanno, A.

AU - Buskulic, D.

AU - Buy, C.

AU - Byer, R. L.

AU - Cabero, M.

AU - Cadonati, L.

AU - Cagnoli, G.

AU - Cahillane, C.

AU - Calderón Bustillo, J.

AU - Callister, T. A.

AU - Calloni, E.

AU - Camp, J. B.

AU - Cannon, K. C.

AU - Cao, H.

AU - Cao, J.

AU - Capano, C. D.

AU - Capocasa, E.

AU - Carbognani, F.

AU - Caride, S.

AU - Casanueva Diaz, J.

AU - Casentini, C.

AU - Caudill, S.

AU - Cavaglià, M.

AU - Cavalier, F.

AU - Cavalieri, R.

AU - Cella, G.

AU - Cepeda, C. B.

AU - Cerboni Baiardi, L.

AU - Cerretani, G.

AU - Cesarini, E.

AU - Chamberlin, S. J.

AU - Chan, M.

AU - Chao, S.

AU - Charlton, P.

AU - Chassande-Mottin, E.

AU - Cheeseboro, B. D.

AU - Chen, H. Y.

AU - Chen, Y.

AU - Cheng, H. P.

AU - Chincarini, A.

AU - Chiummo, A.

AU - Chmiel, T.

AU - Cho, H. S.

AU - Cho, M.

AU - Chow, J. H.

AU - Christensen, N.

AU - Chu, Q.

AU - Chua, A. J.K.

AU - Chua, S.

AU - Chung, S.

AU - Ciani, G.

AU - Clara, F.

AU - Clark, J. A.

AU - Cleva, F.

AU - Cocchieri, C.

AU - Coccia, E.

AU - Cohadon, P. F.

AU - Colla, A.

AU - Collette, C. G.

AU - Cominsky, L.

AU - Constancio, M.

AU - Conti, L.

AU - Cooper, S. J.

AU - Corbitt, T. R.

AU - Cornish, N.

AU - Corsi, A.

AU - Cortese, S.

AU - Costa, C. A.

AU - Coughlin, M. W.

AU - Coughlin, S. B.

AU - Coulon, J. P.

AU - Countryman, S. T.

AU - Couvares, P.

AU - Covas, P. B.

AU - Cowan, E. E.

AU - Coward, D. M.

AU - Cowart, M. J.

AU - Coyne, D. C.

AU - Coyne, R.

AU - Creighton, J. D.E.

AU - Creighton, T. D.

AU - Cripe, J.

AU - Crowder, S. G.

AU - Cullen, T. J.

AU - Cumming, A.

AU - Cunningham, L.

AU - Cuoco, E.

AU - Canton, T. Dal

AU - Danilishin, S. L.

AU - D’Antonio, S.

AU - Danzmann, K.

AU - Dasgupta, A.

AU - Da Silva Costa, C. F.

AU - Dattilo, V.

AU - Dave, I.

AU - Davier, M.

AU - Davies, G. S.

AU - Davis, D.

AU - Daw, E. J.

AU - Day, B.

AU - Day, R.

AU - De, S.

AU - DeBra, D.

AU - Debreczeni, G.

AU - Degallaix, J.

AU - De Laurentis, M.

AU - Deléglise, S.

AU - Del Pozzo, W.

AU - Denker, T.

AU - Dent, T.

AU - Dergachev, V.

AU - Lasky, P D

AU - Levin, Y

AU - Qiu, S.

AU - Sammut, L.

AU - Smith, R. J.E.

AU - Thrane, E

AU - Whittle, C

AU - Zhu, X. J.

AU - KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration

PY - 2018/12/1

Y1 - 2018/12/1

N2 - We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90 % credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–20deg2 requires at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

AB - We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90 % credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–20deg2 requires at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

KW - Data analysis

KW - Electromagnetic counterparts

KW - Gravitational waves

KW - Gravitational-wave detectors

UR - http://www.scopus.com/inward/record.url?scp=85046034556&partnerID=8YFLogxK

U2 - 10.1007/s41114-018-0012-9

DO - 10.1007/s41114-018-0012-9

M3 - Review Article

VL - 21

JO - Living Reviews in Relativity

JF - Living Reviews in Relativity

SN - 1433-8351

IS - 1

M1 - 3

ER -