TY - JOUR
T1 - Proprotein convertase 5/6 is critical for embryo implantation in women
T2 - Regulating receptivity by cleaving EBP50, modulating ezrin binding, and membrane-cytoskeletal interactions
AU - Heng, Sophea
AU - Cervero, Ana
AU - Simon, Carlos
AU - Stephens, Andrew N
AU - Li, Ying
AU - Zhang, Jin
AU - Paule, Sarah
AU - Rainczuk, Adam
AU - Singh, Harmeeet
AU - Quinonero, Alicia
AU - Tapia, Alejandro
AU - Velasquez, Luis
AU - Salamonsen, Lois
AU - Rombauts, Luk
AU - Nie, Guiying
PY - 2011
Y1 - 2011
N2 - Establishment of endometrial receptivity is vital for successful embryo implantation; its failure causes infertility. Epithelial receptivity acquisition involves dramatic structural changes in the plasma membrane and cytoskeleton. Proprotein convertase 5/6 (PC6), a serine protease of the proprotein convertase (PC) family, is up-regulated in the human endometrium specifically at the time of epithelial receptivity and stromal cell decidualization. PC6 is the only PC member tightly regulated in this manner. The current study addressed the importance and mechanisms of PC6 action in regulating receptivity in women. PC6 was dysregulated in the endometrial epithelium during the window of implantation in infertile women of three demographically different cohorts. Its critical role in receptivity was evidenced by a significant reduction in mouse blastocyst attachment of endometrial epithelial cells after PC6 knockdown by small interfering RNA. Using a proteomic approach, we discovered that PC6 cleaved the key scaffolding protein, ezrin-radixin-moesin binding phosphoprotein 50 (EBP50), thereby profoundly affecting its interaction with binding protein ezrin (a key protein bridging actin filaments and plasma membrane), EBP50/ezrin cellular localization, and cytoskeleton-membrane connections. We further validated this novel PC6 regulation of receptivity in human endometrium in vivo in fertile vs. infertile patients. These results strongly indicate that PC6 plays a key role in regulating fundamental cellular remodeling processes, such as plasma membrane transformation and membrane-cytoskeletal interface reorganization. PC6 cleavage of a crucial scaffolding protein EBP50, thereby profoundly regulating membrane-cytoskeletal reorganization, greatly extends the current knowledge of PC biology and provides substantial new mechanistic insight into the fields of reproduction, basic cellular biology, and PC biochemistry
AB - Establishment of endometrial receptivity is vital for successful embryo implantation; its failure causes infertility. Epithelial receptivity acquisition involves dramatic structural changes in the plasma membrane and cytoskeleton. Proprotein convertase 5/6 (PC6), a serine protease of the proprotein convertase (PC) family, is up-regulated in the human endometrium specifically at the time of epithelial receptivity and stromal cell decidualization. PC6 is the only PC member tightly regulated in this manner. The current study addressed the importance and mechanisms of PC6 action in regulating receptivity in women. PC6 was dysregulated in the endometrial epithelium during the window of implantation in infertile women of three demographically different cohorts. Its critical role in receptivity was evidenced by a significant reduction in mouse blastocyst attachment of endometrial epithelial cells after PC6 knockdown by small interfering RNA. Using a proteomic approach, we discovered that PC6 cleaved the key scaffolding protein, ezrin-radixin-moesin binding phosphoprotein 50 (EBP50), thereby profoundly affecting its interaction with binding protein ezrin (a key protein bridging actin filaments and plasma membrane), EBP50/ezrin cellular localization, and cytoskeleton-membrane connections. We further validated this novel PC6 regulation of receptivity in human endometrium in vivo in fertile vs. infertile patients. These results strongly indicate that PC6 plays a key role in regulating fundamental cellular remodeling processes, such as plasma membrane transformation and membrane-cytoskeletal interface reorganization. PC6 cleavage of a crucial scaffolding protein EBP50, thereby profoundly regulating membrane-cytoskeletal reorganization, greatly extends the current knowledge of PC biology and provides substantial new mechanistic insight into the fields of reproduction, basic cellular biology, and PC biochemistry
UR - http://endo.endojournals.org/content/152/12/5041.full.pdf+html
U2 - 10.1210/en.2011-1273
DO - 10.1210/en.2011-1273
M3 - Article
SN - 0013-7227
VL - 152
SP - 5041
EP - 5052
JO - Endocrinology
JF - Endocrinology
IS - 12
ER -