TY - JOUR
T1 - Prophylaxis in healthcare workers during a pandemic
T2 - a model for a multi-centre international randomised controlled trial using Bayesian analyses
AU - Bruce Metadata, Pepa
AU - Ainscough, Kate
AU - Hatter, Lee
AU - Braithwaite, Irene
AU - Berry, Lindsay R.
AU - Fitzgerald, Mark
AU - Hills, Thomas
AU - Brickell, Kathy
AU - Cosgrave, David
AU - Semprini, Alex
AU - Morpeth, Susan
AU - Berry, Scott
AU - Doran, Peter
AU - Young, Paul
AU - Beasley, Richard
AU - Nichol, Alistair
N1 - Funding Information:
The authors wish to thank Professor Danny McCauley, Dr Anna McGlothlin and Professor Geoffrey Robinson, for agreeing to monitor the safety of the study as part of the DSMC.
Funding Information:
The development of the study protocol and statistical analysis plan and data capture software was funded by the Health Research Council of New Zealand (HRC 20/1095), as part of the government funded response to the initial COVID-19 pandemic (2020 COVID-19 and Emerging Infectious Diseases Grant), and the Health Research Board of Ireland funded Irish Critical Care-Clinical Trials Network (ICC-CTN). The HRC had no role in the design of the study and in the event of implementation would have had no role in the collection, analysis interpretation of data or writing of any manuscripts. The TSC, which was involved in every part of study development, included members of the ICC-CTN (KA, KB and AN).
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Coronavirus disease 2019 (COVID-19) has exposed the disproportionate effects of pandemics on frontline workers and the ethical imperative to provide effective prophylaxis. We present a model for a pragmatic randomised controlled trial (RCT) that utilises Bayesian methods to rapidly determine the efficacy or futility of a prophylactic agent. Methods: We initially planned to undertake a multicentre, phase III, parallel-group, open-label RCT, to determine if hydroxychloroquine (HCQ) taken once a week was effective in preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in healthcare workers (HCW) aged ≥ 18 years in New Zealand (NZ) and Ireland. Participants were to be randomised 2:1 to either HCQ (800 mg stat then 400 mg weekly) or no prophylaxis. The primary endpoint was time to Nucleic Acid Amplification Test-proven SARS-CoV-2 infection. Secondary outcome variables included mortality, hospitalisation, intensive care unit admissions and length of mechanical ventilation. The trial had no fixed sample size or duration of intervention. Bayesian adaptive analyses were planned to occur fortnightly, commencing with a weakly informative prior for the no prophylaxis group hazard rate and a moderately informative prior on the intervention log hazard ratio centred on ‘no effect’. Stopping for expected success would be executed if the intervention had a greater than 0.975 posterior probability of reducing the risk of SARS-CoV-2 infection by more than 10%. Final success would be declared if, after completion of 8 weeks of follow-up (reflecting the long half-life of HCQ), the prophylaxis had at least a 0.95 posterior probability of reducing the risk of SARS-CoV-2 infection by more than 10%. Futility would be declared if HCQ was shown to have less than a 0.10 posterior probability of reducing acquisition of SARS-CoV-2 infection by more than 20%. Discussion: This study did not begin recruitment due to the marked reduction in COVID-19 cases in NZ and concerns regarding the efficacy and risks of HCQ treatment in COVID-19. Nonetheless, the model presented can be easily adapted for other potential prophylactic agents and pathogens, and pre-established collaborative models like this should be shared and incorporated into future pandemic preparedness planning. Trial registration: The decision not to proceed with the study was made before trial registration occurred.
AB - Background: Coronavirus disease 2019 (COVID-19) has exposed the disproportionate effects of pandemics on frontline workers and the ethical imperative to provide effective prophylaxis. We present a model for a pragmatic randomised controlled trial (RCT) that utilises Bayesian methods to rapidly determine the efficacy or futility of a prophylactic agent. Methods: We initially planned to undertake a multicentre, phase III, parallel-group, open-label RCT, to determine if hydroxychloroquine (HCQ) taken once a week was effective in preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in healthcare workers (HCW) aged ≥ 18 years in New Zealand (NZ) and Ireland. Participants were to be randomised 2:1 to either HCQ (800 mg stat then 400 mg weekly) or no prophylaxis. The primary endpoint was time to Nucleic Acid Amplification Test-proven SARS-CoV-2 infection. Secondary outcome variables included mortality, hospitalisation, intensive care unit admissions and length of mechanical ventilation. The trial had no fixed sample size or duration of intervention. Bayesian adaptive analyses were planned to occur fortnightly, commencing with a weakly informative prior for the no prophylaxis group hazard rate and a moderately informative prior on the intervention log hazard ratio centred on ‘no effect’. Stopping for expected success would be executed if the intervention had a greater than 0.975 posterior probability of reducing the risk of SARS-CoV-2 infection by more than 10%. Final success would be declared if, after completion of 8 weeks of follow-up (reflecting the long half-life of HCQ), the prophylaxis had at least a 0.95 posterior probability of reducing the risk of SARS-CoV-2 infection by more than 10%. Futility would be declared if HCQ was shown to have less than a 0.10 posterior probability of reducing acquisition of SARS-CoV-2 infection by more than 20%. Discussion: This study did not begin recruitment due to the marked reduction in COVID-19 cases in NZ and concerns regarding the efficacy and risks of HCQ treatment in COVID-19. Nonetheless, the model presented can be easily adapted for other potential prophylactic agents and pathogens, and pre-established collaborative models like this should be shared and incorporated into future pandemic preparedness planning. Trial registration: The decision not to proceed with the study was made before trial registration occurred.
KW - Bayesian analysis
KW - COVID-19
KW - Healthcare worker
KW - Prophylaxis
UR - http://www.scopus.com/inward/record.url?scp=85132951654&partnerID=8YFLogxK
U2 - 10.1186/s13063-022-06402-w
DO - 10.1186/s13063-022-06402-w
M3 - Article
C2 - 35761370
AN - SCOPUS:85132951654
SN - 1745-6215
VL - 23
JO - Trials
JF - Trials
IS - 1
M1 - 534
ER -